作者: admin

  • 问答系统中的检索复杂度:解码复杂问题的奥秘

    在信息爆炸的时代,问答系统(QA)成为了我们获取知识的重要工具。其中,基于检索的问答系统凭借其从外部资源中获取信息的能力,成为了主流方案。然而,当面对需要多步推理或整合多方面信息才能回答的复杂问题时,这些系统就显得力不从心了。

    如何判断一个问题是否复杂? 现有研究大多关注问题本身的结构,例如多跳问题(需要多步推理才能找到答案)或组合型问题(答案需要整合多个信息片段)。然而,这些指标并不能完全反映一个问题在检索问答系统中的实际难度。

    检索复杂度:衡量问答系统难度的全新视角

    本文介绍了一种名为检索复杂度(RC) 的全新指标,用于衡量问答系统在回答特定问题时的难度。RC 考虑了 检索结果的完整性,即检索到的文档是否包含足够的信息来回答问题。

    直观理解: 假设我们想问“狮子比老虎大吗?”,这个问题虽然结构简单,但答案可能只需要从一个描述狮子和老虎大小的文档中找到。而另一个问题“狮子比冰箱大吗?”,则需要整合多个信息片段才能得出答案,因为很少有文档会同时描述狮子和冰箱的大小。

    Reference-based Question Complexity Pipeline (RRCP):揭示检索复杂度

    为了量化检索复杂度,研究者们设计了一个名为 RRCP 的无监督管道。它包含三个关键部分:

    1. 检索系统: 使用先进的检索技术,根据问题从多个索引中获取相关文档。
    2. GenEval: 一种基于参考的自动评估系统,通过比较检索到的文档和参考答案,评估问题的难度。
    3. 约束机制: 通过两个阈值来判断问题是否满足“可回答性”和“检索集完整性”的约束。

    GenEval:精准评估答案正确性

    GenEval 是一种基于编码器-解码器结构的模型,经过训练可以判断检索到的文档是否包含问题的正确答案。与其他评估方法相比,GenEval 具有以下优势:

    • 基于更强大的编码器-解码器模型,可以更灵活地学习和预测。
    • 训练数据更丰富,包括真实参考数据集和合成数据,可以更好地处理各种情况。

    两个约束:揭示复杂问题的本质

    RRCP 通过两个约束来判断问题的复杂程度:

    1. 可回答性: 评估是否可以通过单个检索到的文档来回答问题。
    2. 检索集完整性: 评估检索到的文档是否包含回答问题所需的所有信息。

    实验验证:RRCP 的优越性

    研究者们在多个问答数据集上对 RRCP 进行了评估,结果表明:

    • RRCP 在识别复杂问题方面表现出色,优于其他基于语言模型的无监督方法。
    • 检索复杂度与问答系统的性能密切相关,复杂度高的问题通常更难回答。
    • RRCP 可以识别多种类型的复杂问题,包括多跳问题、比较问题、时间问题、最高级问题和聚合问题。

    未来的方向:突破局限,开拓应用

    尽管 RRCP 取得了显著成果,但也存在一些局限性,例如对参考答案的依赖和对检索系统质量的敏感性。未来,研究者们将致力于:

    • 减少对参考答案的依赖,探索基于语言模型的无监督评估方法。
    • 提升检索系统的质量,以提高 RRCP 的准确性。

    检索复杂度:问答系统发展的新起点

    检索复杂度的概念为我们理解问答系统的难度提供了新的视角。通过识别复杂问题,我们可以更好地优化问答系统,提升其在处理复杂问题时的性能。未来,随着技术的不断发展,检索复杂度将成为问答系统发展的新起点,推动问答系统向着更智能、更精准的方向发展。

    参考文献:

  • 对话式搜索引擎的排名操纵:一场悄无声息的“战争”

    近年来,大型语言模型(LLM)作为强大的对话式代理,在搜索引擎领域掀起了一场革命。像OpenAI和perplexity.ai这样的公司推出了完全对话式的搜索服务,而谷歌等传统搜索引擎也开始将生成式内容融入其中。这些对话式搜索引擎通过将检索到的网站文本加载到LLM的上下文中,进行摘要和解释,为用户提供更人性化的搜索体验。

    然而,这种革命性的搜索技术也带来了一个不容忽视的问题:对话式搜索引擎是否可以被操纵,从而始终推崇某些特定的内容?这个问题在商业领域尤其重要,因为网站排名往往与企业的收入和声誉息息相关。

    操纵对话式搜索引擎:一场隐形的“战争”

    本文将深入探讨对话式搜索引擎的排名机制,并揭示其在对抗性操纵面前的脆弱性。研究人员发现,通过在网站内容中注入对抗性提示,可以有效地影响LLM的排名结果,从而将某些网站置于搜索结果的顶端。

    LLM的“弱点”:对抗性提示注入

    LLM虽然强大,但它们也存在一些弱点。近年来,研究人员发现,LLM很容易受到“越狱”和提示注入攻击的影响。这些攻击通过在LLM的输入中插入对抗性字符串,破坏LLM的安全性和质量目标。

    对话式搜索引擎的“弱点”:排名机制的脆弱性

    对话式搜索引擎通常采用检索增强生成(RAG)架构,通过检索相关文本并将其加载到LLM的上下文中来生成答案。研究人员发现,RAG模型的排名机制容易受到对抗性提示注入攻击的影响。

    实验结果:对抗性提示注入的有效性

    研究人员通过实验验证了对抗性提示注入的有效性。他们构建了一个名为RagDoll的数据集,包含来自不同产品类别(如个人护理、电子产品、家用电器等)的真实网站。实验结果表明,不同的LLM在优先考虑产品名称、文档内容和上下文位置方面存在显著差异。

    更重要的是,研究人员发现,通过使用基于攻击树的“越狱”技术,可以可靠地将排名较低的网站提升到搜索结果的顶端。这些攻击甚至可以转移到像perplexity.ai这样的先进对话式搜索引擎。

    未来展望:防御对抗性提示注入攻击

    研究人员强调,对话式搜索引擎的脆弱性是一个亟待解决的问题。他们呼吁更多研究人员关注LLM的鲁棒性,并开发有效的防御机制,以抵御对抗性提示注入攻击。

    参考文献

    总结

    对话式搜索引擎的崛起为我们带来了更加人性化的搜索体验,但也带来了新的安全挑战。对抗性提示注入攻击的出现表明,对话式搜索引擎的排名机制存在漏洞,这可能会对企业的利益和用户的搜索体验造成负面影响。因此,加强LLM的鲁棒性,开发有效的防御机制,将成为未来对话式搜索引擎发展的关键。

人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 借一步网 沪ICP备2024052574号-1