作者: C3P00

  • LLM 大语言模型的输出是一段文本,如何计算误差?

    对于输出文本的大型语言模型(如GPT系列模型),计算误差通常涉及到预测下一个词或者一系列词的概率分布,并使用特定的损失函数来衡量模型预测与真实值之间的差异。下面是详细步骤:

    • 模型输出:
    • 模型在给定前文(或上下文)的条件下输出一个概率分布,这个分布表示下一个词是词汇表中每个词的概率。
    • 真实标签:
    • 真实标签通常是一个“one-hot”编码的向量,表示实际出现的下一个词。在这个向量中,实际单词的位置为1,其余位置为0。
    • 损失函数:
    • 对于语言模型,常用的损失函数是交叉熵损失(Cross-Entropy Loss)。这个函数衡量的是模型输出的概率分布和真实标签之间的差异。具体来说,交叉熵损失计算的是模型输出的概率分布的负对数似然在真实单词位置的值。
    • 计算步骤:
    • 对于单个训练样本,如果模型对于下一个词的预测概率分布是 ( P ),真实的单词在词汇表中的位置是 ( y ),则交叉熵损失 ( L ) 可以表示为: [ L=−∑iyi​log(Pi​) ] 在实际操作中,因为 ( y ) 是一个one-hot向量,上式中只有真实单词对应位置的项会有贡献,所以损失简化为: [ L=−log(Py​) ] 其中 ( P_y ) 是模型预测的真实单词的概率。
    • 批量处理:
    • 在处理大量数据时,通常会计算一批数据的平均损失。这是通过对批中每个样本的损失进行求和,然后除以批中样本的数量得到的。
    • 反向传播:
    • 使用损失函数关于模型参数的梯度,来更新模型的参数,以此减少预测误差。

    通过这种方式,即使输出是文本,语言模型也能够在训练过程中通过优化损失函数来减少预测误差,提高对下一个词或一系列词预测的准确性。在实际应用中,模型还会被评估其在多样化的文本生成、理解或其他NLP任务上的性能,这些任务可能需要额外的评估指标,如BLEU、ROUGE或者Perplexity等。

  • ZEPHYR: 直接提取LM对齐

    摘要
    我们的目标是创建一个更小、与用户意图对齐的语言模型。先前的研究表明,对更大的模型应用蒸馏监督微调(dSFT)可以显著提高任务准确性;然而,这些模型没有对齐,即它们无法很好地响应自然提示。为了提取这个特性,我们尝试使用来自AI反馈(AIF)的偏好数据。我们从一个由教师模型排名的输出数据集开始,应用蒸馏直接偏好优化(dDPO)来学习一个具有显著改善意图对齐的聊天模型。这种方法只需要几个小时的训练时间,在微调过程中不需要任何额外的采样。最终结果ZEPHYR-7B在7B参数模型的聊天基准测试中取得了新的最佳表现,并且不需要人工标注。特别是,在MT-Bench上的结果显示,ZEPHYR-7B超过了基于RLHF的开放访问模型LLAMA2-CHAT-70B。该系统的代码、模型、数据和教程可在 https://github.com/huggingface/alignment-handbook 上获得。

    引言
    近年来,小型、开放的大型语言模型(LLM)的能力大大提高,从早期的GPT-2样式模型(Wang&Komatsuzaki,2021)到准确而紧凑的模型(Touvron等,2023;Penedo等,2023;Jiang等,2023),这些模型训练的令牌数量远远超过了Chincilla缩放定律建议的“计算优化”数量。此外,研究人员已经证明,通过使用专有模型进行蒸馏监督微调(dSFT)可以进一步提高这些模型的准确性(Taori等,2023)。在这种方法中,更强大的教师模型的输出被用作学生模型的监督数据。

    蒸馏已经被证明是改善各种不同任务上开放模型的有效工具(Chiang等,2023);然而,它并没有达到教师模型的性能(Gudibande等,2023)。用户注意到这些模型不是“意图对齐”的,即它们的行为不符合人类用户的偏好。这种特性经常导致无法正确回答查询的输出。

    意图对齐一直很难量化,但最近的研究已经导致了MT-Bench(Zheng等,2023)和AlpacaEval(Li等,2023)等针对这种行为的基准的发展。这些基准产生的分数与模型输出的人类评级密切相关,并确认了专有模型的质量优于使用人工反馈训练的开放模型,后者又优于使用蒸馏训练的开放模型。这促使人们对对齐进行仔细的人工反馈收集,但这往往需要巨大的成本,比如LLAMA2-CHAT(Touvron等,2023)。

    在这项工作中,我们考虑了通过蒸馏完全对齐一个小型开放LLM的问题。主要步骤是利用来自教师模型集合的AI反馈(AIF)作为偏好数据,并将蒸馏直接偏好优化作为学习目标(Rafailov等,20231. 引言

    近年来,大型语言模型(LLM)在自然语言处理领域取得了巨大的进展。从早期的GPT-2模型到如今更准确、更紧凑的模型,这些模型通过训练来理解和生成自然语言文本。然而,尽管这些模型在许多任务上表现出色,但它们并不总是能够完全理解用户的意图。

    为了提高模型在特定任务上的准确性和对用户意图的理解能力,研究人员提出了一种新的方法——直接提取LM对齐。这种方法通过蒸馏监督微调(dSFT)和偏好数据优化(dDPO)来训练一个与用户意图对齐的小型语言模型。

    本文将详细介绍ZEPHYR项目,它是一个直接提取LM对齐的模型,旨在创建一个小型语言模型,它能够更好地理解用户的意图并提供准确的回答。

    2. 直接提取LM对齐的方法

    在传统的监督学习中,通常使用人工标注的数据来训练模型。然而,这种方法需要耗费大量的时间和人力成本,并且对于大规模的语言模型来说,准备数据集是一项巨大的挑战。

    为了解决这个问题,研究人员提出了一种直接提取LM对齐的方法。该方法利用来自AI反馈(AIF)的偏好数据,通过蒸馏直接偏好优化(dDPO)来训练模型。具体而言,该方法从一个由教师模型排名的输出数据集开始,通过优化目标函数来训练一个与用户意图对齐的聊天模型。与传统的监督学习相比,直接提取LM对齐的方法具有以下优势:

    • 更高的效率:直接提取LM对齐的方法只需要几个小时的训练时间,而不需要额外的采样过程。
    • 更好的意图对齐:通过使用偏好数据优化,模型能够更好地对齐用户的意图,从而提供更准确的回答。
    • 无需人工标注:与传统的监督学习不同,直接提取LM对齐的方法不需要人工标注的数据,从而减少了人力成本。

    3. ZEPHYR-7B模型的实验结果

    ZEPHYR项目的目标是创建一个小型语言模型,它能够在特定任务上表现出与人类对齐的准确性。为了评估ZEPHYR模型的性能,研究人员使用了MT-Bench基准测试数据集,并与其他模型进行了比较。

    实验结果表明,ZEPHYR-7B模型在MT-Bench数据集上取得了优秀的表现,超过了基于RLHF的开放访问模型LLAMA2-CHAT-70B。与其他开放模型相比,ZEPHYR-7B模型在意图对齐方面具有明显的优势,这意味着它能够更好地理解用户的意图并提供准确的回答。

    4. 结论

    本文介绍了ZEPHYR项目的直接提取LM对齐方法,并展示了实验结果。通过使用偏好数据优化和蒸馏直接偏好优化,ZEPHYR-7B模型在意图对齐方面取得了优异的性能,超越了其他开放模型。这证明了直接提取LM对齐方法的有效性。

    ZEPHYR项目的成功背后有几个关键因素。首先,使用AI反馈数据作为偏好数据,能够更好地捕捉用户的意图和偏好。这种数据的使用使得模型能够更好地对齐用户的意图,从而提供更准确的回答。

    其次,蒸馏直接偏好优化的方法能够在短时间内训练出高性能的模型。与传统的监督学习相比,这种方法不需要人工标注的数据,大大减少了训练的时间和成本。

    最后,ZEPHYR项目的成功离不开团队的努力和创新精神。研究人员通过不断探索和改进模型的训练方法,取得了令人瞩目的成果。

    虽然ZEPHYR项目取得了显著的成果,但仍有一些挑战需要克服。例如,如何进一步提高模型在意图对齐方面的性能,以及如何应对不同领域和语境下的挑战,都是需要进一步研究和探索的问题。

    总之,ZEPHYR项目的直接提取LM对齐方法为创建小型语言模型提供了一种有效的途径。通过利用AI反馈数据和蒸馏直接偏好优化,ZEPHYR-7B模型在意图对齐方面取得了显著的进展。这为未来的研究和应用提供了新的思路和方法。我们期待着在实际应用中看到这种方法的进一步发展和应用。

    💡 如果你对ZEPHYR项目感兴趣,想了解更多关于该项目的代码、模型、数据和教程,可以访问 https://github.com/huggingface/alignment-handbook  获取更多信息。

    💡 欢迎留言分享你对ZEPHYR项目的看法和想法!我们期待与您的交流和讨论!

    (本文是基于论文《ZEPHYR: Aligning Large Language Models with Direct Extraction of LM Alignments》的改编,并结合个人理解进行了阐述。)

人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 借一步网
Page Stats: PV: 810 | UV: 480
Last updated: 2025-05-16 14:14:13
沪ICP备2024052574号-1