分类: AGI

  • 从 LLAMA 到 LLAMA2:开源模型的进化之路

    大家好,欢迎来到我的博客!今天,我们要聊一聊有关两个开源语言模型的故事,它们分别是 LLAMA 和 LLAMA2。正如在科技世界里常见的,这两个模型的出现,都代表着一次重要的突破和进化。那么,它们是如何超越自身,再次突破技术瓶颈的呢?让我们一起探索吧。

    1. LLaMA:以开放和高效为目标的基础语言模型

    首先,我们来看看第一个主角 LLAMA。它仅仅使用公开可用的数据(数量高达数万亿 tokens)就训练出了效果超越 GPT-3 和 Chinchilla-70B PaLM-540B 的模型。最让人惊奇的是,它的体积比 GPT-3 小十倍,但效果更好。这是怎么做到的呢?

    LLaMA 的开发者们发现,给定一定的计算量预算,我们可以通过在较小的模型上训练更多的数据来获取最好的效果。这就是 LLAMA 所依据的尺度原则。

    为了训练 LLAMA,开发者们使用了多种来源的预训练数据,包括英文 CommonCrawl, Github, Wikipedia 等。每一种数据都经过了严格的清洗和筛选,以确保模型训练的质量。在训练时,每个 token 只训练一次,除了 Wikipedia 和 Books,训练了两次。

    LLaMA 的模型结构基于 transformer,在 GPT3、PaLM、GPTNeo 的基础上做出了改良。其中包括使用 RMSNorm 进行 Pre-normalization,使用 SwiGLU 替换 ReLU 作为激活函数,舍弃绝对位置编码,使用旋转位置编码等一系列创新手段。

    2. LLaMa 2:基础和微调并进的聊天模型

    接下来,我们来了解一下 LLAMA 的升级版本——LLAMA2。虽然 LLAMA1 的效果已经非常优秀,但是与闭源的“产品级”模型相比,如 ChatGPT、BARD、Claude,仍有一定的差距。因此 LLAMA2 的目标就是要尽可能地提升模型的性能,使其更符合人类的偏好。

    LLAMA2 的训练数据量增加了40%,达到了2万亿 tokens。同时,上下文长度翻倍,引入了 grouped-query attention 的新技术。这些改变使得 LLAMA2 在长数据的效果明显提升,而在短数据上的性能则没有下降。

    LLAMA2 在微调上也做了很多工作。它引用了 LLAMA1 中的 SFT 数据集设置,对模型进行了精细的调整。在收集数据时,采用了课程策略,逐渐将问题复杂化,使得模型能够更好地适应和处理各种问题。

    结语

    总的来说,LLAMA 和 LLAMA2 的出现,代表了开源模型的重大进步。他们的成功,得益于严谨的数据处理,创新的模型结构,以及精细的模型调整。这些都是我们在探索人工智能的道路上,值得学习和借鉴的经验。

    希望这篇博客能给你带来一些启发和灵感。我们下次再见!

  • 创新解决大模型长上下文计算挑战:HyperAttention解读

    大家好,我相信你们在使用人工智能应用的过程中,一定对其中的语言处理功能印象深刻。它们可以帮助我们理解复杂的文本,生成文章甚至进行对话。但你可能不知道,这背后有一种重要的模型叫做“大型语言模型”。近日,一项名为“HyperAttention”的研究引起了我的注意,其主旨在于改善这些大型语言模型处理长篇文章时的效率。这个方法超越了既有技术限制,实现了近线性时间的长文本处理。听起来是不是很神奇?接下来,让我们一起深入了解一下。

    首先,我们需要明白一点,就是处理长上下文的计算挑战。大型语言模型(LLMs)在处理长文本时,必须应对着一个诸多复杂因素的大矩阵,这个矩阵的计算和存储需求都是巨大的。就像你试图一口气读完一本厚厚的百科全书,不仅费时费力,还需要巨大的记忆力。这就是大型语言模型面临的挑战。

    为了迎接这个挑战,研究人员提出了一种新颖的近似注意力机制,被命名为“HyperAttention”。这个方法的核心是引入了两个参数,用来衡量矩阵的复杂度。并且,HyperAttention的设计非常模块化,易于与其他快速低水平实现进行整合,特别是FlashAttention。根据实验结果,HyperAttention在处理长篇章数据集时,表现出了显著的速度优势。

    研究者们用一个例子来证明这种优势:在一个名为ChatGLM的模型中,使用HyperAttention后,处理长达32k的文本所需的时间减少了50%,而生成的文本复杂度只是从5.6提高到6.3。当处理更长的文本,例如长度为131k的文本时,HyperAttention甚至能在单个注意力层上提供5倍的速度提升。

    HyperAttention的出现,不仅解决了大型语言模型处理长文本时的速度问题,还开启了新的研究方向。对于那些需要处理大量文本数据的应用,比如自动翻译、文章生成等,HyperAttention无疑将带来巨大的改变。

人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 借一步网
Page Stats: PV: 2087 | UV: 1209
Last updated: 2025-06-23 03:57:02
沪ICP备2024052574号-1