标签: AGI

  • 告别数据孤岛:用扩散模型合成混合类型表格数据

    在当今数据驱动的时代,表格数据无处不在,从客户信息到金融交易记录,再到科学实验数据,表格数据承载着海量的信息。然而,由于隐私保护、数据稀缺等原因,我们往往无法直接使用真实数据进行分析和建模。

    合成数据应运而生,它可以模拟真实数据的统计特性,为我们提供安全可靠的数据来源。近年来,合成数据生成技术取得了长足进步,但如何生成高质量的混合类型表格数据仍然是一个挑战。

    混合类型表格数据指的是包含数值型和类别型特征的数据,例如,客户信息表中可能包含年龄(数值型)、性别(类别型)、收入(数值型)等特征。传统的合成数据生成方法往往难以处理混合类型数据,因为它们无法有效地捕捉不同类型特征之间的复杂关系。

    TABSYN 应运而生,它是一种基于 扩散模型 的新型表格数据合成方法,能够有效地解决上述问题。

    TABSYN 的核心思想

    TABSYN 的核心思想是将原始表格数据映射到一个 连续的潜在空间 中,然后在这个潜在空间中训练一个扩散模型来学习潜在数据的分布。

    潜在空间 是一个抽象的空间,它可以将复杂的数据压缩成更简洁的表示。TABSYN 利用 变分自编码器 (VAE) 来构建潜在空间,VAE 能够将表格数据映射到一个 标准正态分布 的潜在空间,这使得后续的扩散模型训练变得更加容易。

    扩散模型 是一种强大的生成模型,它通过逐步向数据添加噪声来破坏数据,然后学习如何从噪声中恢复原始数据。TABSYN 在潜在空间中训练了一个 基于分数的扩散模型,这个模型能够学习潜在数据的分布,并生成新的潜在数据。

    TABSYN 的优势

    TABSYN 具有以下几个显著优势:

    • 通用性: TABSYN 可以处理各种类型的表格数据,包括数值型、类别型等。
    • 高质量: TABSYN 能够生成高质量的合成数据,它能够准确地模拟真实数据的统计特性,包括单列分布、列间相关性等。
    • 高速: TABSYN 的合成速度非常快,它只需要很少的逆向步骤就能生成高质量的合成数据。

    TABSYN 的应用场景

    TABSYN 在以下场景中具有广泛的应用:

    • 数据增强: TABSYN 可以用来生成额外的训练数据,从而提高机器学习模型的性能。
    • 隐私保护: TABSYN 可以用来生成合成数据,从而保护原始数据的隐私。
    • 缺失值填补: TABSYN 可以用来填补表格数据中的缺失值。

    实验结果

    论文作者对 TABSYN 进行了大量的实验,结果表明 TABSYN 在多个指标上都优于现有的合成数据生成方法。

    • TABSYN 在单列分布估计和列间相关性估计方面,分别将错误率降低了 86% 和 67%。
    • TABSYN 在机器学习效率和缺失值填补方面也表现出色。

    总结

    TABSYN 是一种基于扩散模型的混合类型表格数据合成方法,它能够有效地生成高质量的合成数据,并具有通用性、高质量和高速等优势。TABSYN 在数据增强、隐私保护和缺失值填补等方面具有广泛的应用前景。

    参考文献

    • Zhang, Hengrui, et al. “Mixed-type Tabular Data Synthesis with Score-Based Diffusion in Latent Space.” International Conference on Learning Representations, 2024.

    希望这篇文章能够帮助您更好地理解 TABSYN 的核心思想和优势。如果您想了解更多关于 TABSYN 的信息,请参考论文原文。

  • 理解越狱成功:大型语言模型中潜在空间动态的研究

    在大规模生成式AI模型(Large Language Models, LLMs)越来越普及的今天,确保这些模型输出的安全性成为了一个重要问题。尽管模型提供者采用了强化学习(Reinforcement Learning from Human Feedback, RLHF)和安全过滤等方法来防止模型生成有害内容,但仍有一些方法可以绕过这些安全措施,导致模型输出不当内容。这些方法被称为“越狱”(jailbreaks)。本文旨在深入理解不同类型的越狱方法是如何工作的,并探讨可能的对策。

    研究方法

    数据与模型

    本研究聚焦于Vicuna 13B v1.5模型,并使用了一组包含24种越狱类型和352个有害提示的数据集。

    测量越狱成功

    越狱成功率(Attack Success Rate, ASR)是通过Llama Guard 2 8B和Llama 3 8B模型的判断以及人工检查来计算的。

    激活模式分析

    研究使用主成分分析(PCA)来分析模型不同层次中不同越狱类型的激活模式,以识别相似行为的簇。

    越狱向量的相似性与可转移性

    通过计算越狱提示和非越狱提示之间激活的平均差异,提取每种越狱类型的越狱向量。使用余弦相似度来评估这些向量之间的相似性,并测试这些向量在其他越狱类型中的转移性,即使用它们来引导模型远离生成有害输出。

    有害性抑制分析

    研究探讨越狱是否通过减少模型对提示有害性的感知来成功。通过分析模型在越狱提示上的激活与预定义的“有害性向量”之间的余弦相似度来实现这一点。

    关键发现

    激活聚类

    越狱激活根据其语义攻击类型聚类,表明存在共享的内部机制。

    越狱向量的相似性

    不同类别的越狱向量显示出显著的余弦相似性,表明这些向量可以在不同的越狱类型之间进行交叉缓解。

    越狱向量的可转移性

    使用一种越狱类型的越狱向量可以降低其他越狱类型的成功率,即使这些越狱类型在语义上不相似。

    有害性抑制

    成功的越狱,特别是涉及样式操纵和人格采用的越狱,有效地减少了模型对提示有害性的感知。

    启示

    开发稳健的对策

    研究结果表明,通过针对成功攻击的共享机制,可以开发出可推广的越狱对策。

    对越狱动态的机制理解

    本研究提供了关于越狱如何利用LLMs内部工作原理的宝贵见解,为更有效的对齐策略铺平了道路。

    限制

    • 本研究仅聚焦于单一LLM(Vicuna 13B v1.5),限制了发现的普遍性。
    • 研究主要考察了一组特定的越狱类型,可能忽略了其他成功的攻击向量。

    结论

    本文揭示了LLMs中越狱成功的潜在空间动态。研究结果强调了通过利用不同越狱类型的共享机制来开发稳健对策的潜力。需要进一步研究以探索这些发现对各种LLM架构和攻击策略的普遍性。

    参考文献

    1. Achiam, J., et al. (2023). GPT-4 technical report. arXiv preprint arXiv:2303.08774.
    2. Bai, Y., et al. (2022a). Training a helpful and harmless assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862.
    3. Chao, P., et al. (2023). Jailbreaking black box large language models in twenty queries. arXiv preprint arXiv:2310.08419.
    4. Lee, A., et al. (2024). A mechanistic understanding of alignment algorithms: A case study on DPO and toxicity. arXiv preprint arXiv:2401.01967.
    5. Wei, A., et al. (2024). Jailbroken: How does LLM safety training fail? Advances in Neural Information Processing Systems, 36.
人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 借一步网
Page Stats: PV: 2158 | UV: 1177
Last updated: 2025-06-22 14:08:53
沪ICP备2024052574号-1