标签: AGI

  • 探索语言模型的易学性:从概率有限状态语言的学习视角

    引言

    大型语言模型究竟能学到什么?这是一个不断被研究的问题。语言模型(LM)本质上是分布在字符串上的概率分布。因此,理解它们的学习能力可以转化为研究它们能学习哪些字符串分布的能力。尽管之前的研究主要集中在理论上的界限,但我们希望从实证角度来理解它们的可学性。不同于先前的研究,我们评估语言模型在其“主场”——学习字符串上的概率分布——而不是作为形式语言的分类器的表现。

    在本文中,我们特别研究了有限状态语言模型(FSLM)的可学性。我们首先从理论上量化了一个神经语言模型(Neural LM)在学习一个FSLM时所需的最小表示空间大小,具体来说,通过其条件分布对数值线性空间的大小来衡量。然后,我们通过实证测试FSLM的可学性,并发现其秩是RNN和Transformer学习这类语言的强预测因子,但其他FSLM属性对两者的影响模式不同。

    预备知识

    语言模型的定义

    语言模型是分布在字符串上的概率分布。两个语言模型若对每个字符串的概率相同,则称它们是等价的。现代的语言模型通常定义为条件概率分布的乘积:

        \[p(y) = p(\text{EOS}|y) \prod_{t=1}^{|y|} p(y_t | y_{<t}),\]

    其中,EOS是一个特殊的结束符号。

    神经语言模型

    神经语言模型通过线性变换和softmax归一化的隐藏状态来定义条件分布。具体来说,给定字符串的表示h_{t-1},条件分布定义为:

        \[p(y_t | y_{<t}) = \text{softmax}(E h_{t-1})_{y_t},\]

    其中,E是输出矩阵,D是隐藏状态和输出矩阵的大小。

    有限状态语言模型

    有限状态自动机(FSA)是定义语言模型的经典形式之一。一个概率有限状态自动机(PFSA)通过有限状态的条件下一个符号分布来定义字符串的概率。PFSA通过状态和符号的转移关系来移动,并通过乘积的转移权重来接受字符串的概率。

    表示有限状态语言模型的神经语言模型

    Rank-约束的PFSA

    PFSA定义的条件分布可以是任意的符号分布,因此我们定义了一个参数化的PFSA:

        \[p(y | q) = \text{softmax}(T_{:, q})_y,\]

    其中,T是一个秩为R的矩阵。

    神经语言模型的等价性

    为了使神经语言模型与一个PFSA的分布匹配,需要满足以下条件:

        \[\text{softmax}(E h) = \text{softmax}(T_{:, q}),\]

    这意味着:

        \[E h = T_{:, q} + c_q,\]

    其中c_q是一个常数向量。为了匹配PFSA的条件分布,神经语言模型的隐藏状态大小必须至少为R+1

    实验设计与结果

    实验设计

    我们通过生成随机的PFSA来评估神经语言模型学习FSLM的能力,并测量它们之间的KL散度。我们生成了2100个随机PFSA,并训练了15000个Transformer和RNN语言模型。实验设置的详细信息如下:

    生成随机PFSA

    我们生成的PFSA具有不同的状态数|Q|和符号数|Σ|,并通过随机选取每个状态的转移来设置其转移函数。然后,通过SVD方法将转移矩阵T的秩降低到R,并将其归一化为转移概率。

    数据生成

    我们从每个PFSA生成20k个随机字符串,并分为训练集和测试集。为了适应Transformer的上下文长度限制,我们将字符串截断为256个符号。

    模型训练

    我们分别训练了具有不同隐藏状态大小D的RNN和Transformer模型。每个模型训练两个epoch,并使用标准的交叉熵损失函数。

    结果分析

    我们使用线性回归模型来量化PFSA属性对KL散度的影响。结果表明,PFSA的秩和字符串的期望长度是KL散度的重要预测因子。此外,RNN在学习FSLM方面表现优于Transformer。

    讨论

    理论结果的意义

    我们的理论结果具体量化了学习有限状态语言模型所需的最小表示空间。这为理解神经语言模型的表示能力提供了重要的见解,特别是在模型的参数共享和表示能力方面。

    实证结果的意义

    我们的实证结果表明,PFSA的秩和字符串长度对学习的难度有显著影响。这与我们的理论结果一致,表明随着PFSA的秩的增加,神经语言模型需要更大的隐藏状态来准确建模其分布。

    结论

    通过本文的研究,我们提供了对神经语言模型学习有限状态语言模型能力的全面理解。我们的结果展示了使用形式语言理论来生成有意义的见解,并呼吁进一步的理论研究以更接近实际应用。


    这篇文章通过理论分析和实证研究,探讨了神经语言模型在学习有限状态语言模型时的表现。希望这篇文章能够为您提供有价值的见解和参考。

  • 告别矩阵乘法:探索轻量级语言模型的新纪元

    大型语言模型(LLM)在自然语言处理领域取得了巨大成功,但其高昂的计算成本和庞大的内存需求也成为了限制其应用的瓶颈。矩阵乘法(MatMul)是LLM中最主要的计算操作,其占用了大部分的计算时间和内存资源。为了解决这一问题,来自加州大学圣克鲁兹分校的研究人员提出了一种全新的,可扩展的无矩阵乘法语言模型(MatMul-free LM),该模型在保持强大性能的同时,彻底消除了所有矩阵乘法操作。

    为什么矩阵乘法如此重要?

    矩阵乘法在神经网络中无处不在,从密集层到卷积层,再到自注意力机制,都离不开矩阵乘法。这主要是因为现代图形处理单元(GPU)对矩阵乘法操作进行了高度优化。通过利用CUDA和cuBLAS等线性代数库,矩阵乘法可以被高效地并行化和加速。这使得AlexNet在2012年ImageNet竞赛中取得了胜利,并推动了深度学习的快速发展。

    然而,矩阵乘法操作也带来了巨大的计算成本和内存消耗。在训练和推理阶段,矩阵乘法通常占用了绝大部分的执行时间和内存访问。因此,研究人员一直在探索用更简单的操作来替代矩阵乘法。

    现有方法的局限性

    目前,替代矩阵乘法的方法主要有两种:

    1. 用基本运算替代矩阵乘法: 例如AdderNet用带符号的加法来替代卷积神经网络中的乘法。但AdderNet主要针对计算机视觉任务,在语言建模方面效果不佳。
    2. 二值化或三值化: 将矩阵中的元素量化为二进制或三进制,从而将矩阵乘法简化为简单的加减运算。这种方法可以应用于激活值或权重。例如,脉冲神经网络(SNN)使用二值化的激活值,而二值化神经网络(BNN)和三值化神经网络(TNN)使用量化的权重。

    近年来,BitNet等语言模型证明了量化方法的可扩展性,将所有密集层权重替换为二进制或三进制值,支持高达30亿个参数。然而,BitNet仍然保留了自注意力机制,而自注意力机制仍然依赖于昂贵的矩阵乘法。

    MatMul-free LM的创新之处

    为了彻底消除LLM中的矩阵乘法,研究人员提出了MatMul-free LM,该模型利用了密集层中的加法运算和自注意力机制中的逐元素哈达玛积。

    1. 三值化权重: 类似于BNN,MatMul-free LM将密集层中的权重限制为{-1, 0, +1},从而将矩阵乘法转换为简单的加减运算。

    2. 无矩阵乘法线性门控循环单元(MLGRU): 为了消除自注意力机制中的矩阵乘法,研究人员对门控循环单元(GRU)进行了优化,使其仅依赖于逐元素乘法。

    3. 无矩阵乘法门控线性单元(GLU): MatMul-free LM使用GLU作为通道混合器,并将其中的密集层替换为三值化权重,从而消除了矩阵乘法。

    MatMul-free LM的优势

    MatMul-free LM具有以下优势:

    • 计算效率更高: 消除了矩阵乘法操作,大幅减少了计算时间。
    • 内存需求更低: 三值化权重减少了模型的内存占用。
    • 硬件友好: 更适合在FPGA等专用硬件上实现。

    实验结果

    研究人员对MatMul-free LM进行了实验,并将其与Transformer++模型进行了比较,结果表明:

    • MatMul-free LM在性能上与Transformer++相当,甚至在某些情况下表现更佳。
    • MatMul-free LM在训练和推理阶段的效率都更高,内存占用和延迟都更低。
    • MatMul-free LM在FPGA上的实现也取得了成功,其效率接近人脑。

    未来展望

    MatMul-free LM的出现,为构建更高效、更节能的LLM开辟了新的道路。随着LLM在各种平台上的应用不断扩展,MatMul-free LM将成为构建高效、可扩展的LLM的重要方向。

    参考文献:

    [1] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097–1105, 2012.

    [2] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

    [3] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. In International Conference on Learning Representations, 2016.

    [4] S. B. Furber. Neuromorphic engineering. The MIT Press, 2016.

    [5] G. Indiveri, B. Linares-Barranco, R. Legenstein, D. Chicca, G. Indiveri, B. Linares-Barranco, R. Legenstein, D. Chicca, and A. Hamilton. Neuromorphic silicon. Springer, 2011.

    [6] T. Masquelier, S. Thornton, S. B. Furber, and J. V. Pulvermüller. A spiking neural network model of word recognition in the human brain. PLoS computational biology, 10(12):e1003974, 2014.

    [7] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks. In Advances in neural information processing systems, pp. 4107–4115, 2016.

    [8] M. Courbariaux, Y. Bengio, and J.-P. Salinas. Binaryconnect: Training deep neural networks with binary weights during backpropagation. In Advances in neural information processing systems, pp. 4107–4115, 2015.

    [9] R. Zhu, Y. Zhang, E. Sifferman, T. Sheaves, Y. Wang, D. Richmond, P. Zhou, and J. K. Eshraghian. Scalable MatMul-free Language Modeling. arXiv preprint arXiv:2406.02528, 2024.

    [10] L. Pei, S. Li, S. Zhang, J. Li, and S. Liu. BitNet: A Billion-Parameter Binary and Ternary Neural Network for Language Modeling. arXiv preprint arXiv:2302.03633, 2023.

    [11] L. Pei, S. Li, S. Zhang, J. Li, and S. Liu. BitNet: A Billion-Parameter Binary and Ternary Neural Network for Language Modeling. arXiv preprint arXiv:2302.03633, 2023.

    [12] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, H. Li, Y. Tang, Y. Wang, and X. Lin. Training deep neural networks with 8-bit floating point numbers. In Advances in Neural Information Processing Systems, pp. 6083–6092, 2018.

    [13] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734, 2014.

    [14] D. M. K. Pramanik, S. Bhattacharyya, and P. Das. Ternary BERT: Low-Precision BERT for Resource-Constrained Devices. arXiv preprint arXiv:2004.06633, 2020.

    [15] Y. Sun, Y. Zhang, Z. Liu, Y. Liu, and J. Tang. Quantized BERT: Efficient BERT for Resource-Constrained Devices. arXiv preprint arXiv:1910.04432, 2019.

    [16] Y. Wang, Y. Zhang, Y. Sun, J. Tang, and Z. Liu. Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights. arXiv preprint arXiv:2002.08150, 2020.

    [17] J. Zhou, Z. Sun, A. Zou, Q. Liu, and Y. Gong. Training Low-Precision Deep Neural Networks via Quantization-Aware Training. arXiv preprint arXiv:1905.04893, 2019.

    [18] C. Lee, S. Lee, H. Kim, and J. Shin. Spikformer: Spiking Neural Networks for Efficient Transformer. arXiv preprint arXiv:2103.13518, 2021.

    [19] C. Lee, S. Lee, H. Kim, and J. Shin. Spikformer: Spiking Neural Networks for Efficient Transformer. arXiv preprint arXiv:2103.13518, 2021.

    [20] A. S. M. A. Saleh, A. A. M. Al-Jumaily, and A. Al-Ani. Spike-Driven Transformer for Image Classification. arXiv preprint arXiv:2203.08669, 2022.

    [21] S. M. A. Saleh, A. A. M. Al-Jumaily, and A. Al-Ani. Spike-Driven Transformer for Image Classification. arXiv preprint arXiv:2203.08669, 2022.

    [22] X. Li, L. Huang, J. Li, and Y. Chen. Spiking-BERT: A Spiking Neural Network for Sentiment Analysis. arXiv preprint arXiv:2106.07442, 2021.

    [23] M. A. Saleh, A. A. M. Al-Jumaily, and A. Al-Ani. SpikeBERT: A Spiking Neural Network for Sentiment Analysis. arXiv preprint arXiv:2110.03458, 2021.

    [24] A. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku, and D. Tran. Image transformer. In International Conference on Machine Learning, pp. 3887–3896, 2018.

    [25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in neural information processing systems, pp. 5998–6008, 2017.

    [26] S. Liu, Z. Chen, Y. Li, Z. Liu, and W. Zhang. Mamba: A Low-Resource and Efficient Transformer. arXiv preprint arXiv:2106.02256, 2021.

    [27] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. In International Conference on Learning Representations, 2015.

    [28] P. Ramachandran, B. Zoph, and Q. Le. Swish: A self-gated activation function. arXiv preprint arXiv:1710.05941, 2017.

    [29] A. Courbariaux, R. Bengio, and J.-P. Salinas. Binaryconnect: Training deep neural networks with binary weights during backpropagation. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4107–4115, 2015.

    [30] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks. In Advances in Neural Information Processing Systems, pp. 4107–4115, 2016.

    [31] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

    [32] S. Z. Li, Y. H. Zou, T. Y. Liu, and B. Zhang. Linear recurrent unit. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 1780–1789, 2018.

    [33] A. Radford, J. Wu, R. Sutskever, and I. Sutskever. Learning to generate text with recurrent neural networks. arXiv preprint arXiv:1701.07875, 2017.

    [34] B. Wang. RWKV: A New Type of Recurrent Neural Network. arXiv preprint arXiv:2210.00078, 2022.

    [35] L. Pei, S. Li, S. Zhang, J. Li, and S. Liu. BitNet: A Billion-Parameter Binary and Ternary Neural Network for Language Modeling. arXiv preprint arXiv:2302.03633, 2023.

    [36] A. Touvron, T. Bernard, J. Caillard, G. Lample, and E. Lemoine. Llama: Open and Efficient Large Language Models. arXiv preprint arXiv:2302.09492, 2023.

    [37] A. Touvron, T. Bernard, J. Caillard, G. Lample, and E. Lemoine. Llama: Open and Efficient Large Language Models. arXiv preprint arXiv:2302.09492, 2023.

    [38] A. Touvron, T. Bernard, J. Caillard, G. Lample, and E. Lemoine. Llama: Open and Efficient Large Language Models. arXiv preprint arXiv:2302.09492, 2023.

    [39] Mistral AI. Mistral AI: A New Open Source LLM. https://mistral.ai, 2023.

    [40] Y. Bengio, N. L. C. da Silva, J. S. S. Souza, and P. Vincent. Neural networks for speech recognition. The Journal of the Acoustical Society of America, 131(3):1852–1865, 2012.

    [41] M. Courbariaux, Y. Bengio, and J.-P. Salinas. Binaryconnect: Training deep neural networks with binary weights during backpropagation. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4107–4115, 2015.

人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 借一步网
Page Stats: PV: 2076 | UV: 1138
Last updated: 2025-06-20 07:40:19
沪ICP备2024052574号-1