博客

  • 新闻推荐的秘密武器:多视角注意力学习

    你是否曾被海量新闻淹没,难以找到感兴趣的内容?个性化新闻推荐系统应运而生,它就像一位贴心的新闻管家,根据你的喜好为你推荐最合适的新闻。然而,如何让推荐系统真正理解你的兴趣,并精准地推荐你喜欢的新闻呢?这背后隐藏着许多技术奥秘,而本文将带你揭秘其中一项关键技术:多视角注意力学习

    新闻推荐的挑战

    每天,数以万计的新闻涌现,用户不可能一一阅读。个性化新闻推荐系统肩负着帮助用户找到感兴趣的新闻,缓解信息过载的重任。然而,要实现精准的推荐,需要解决两个核心问题:

    • 如何准确地理解新闻内容? 传统的新闻推荐方法往往只关注新闻标题或内容,忽略了其他重要的信息,例如新闻类别和主题。
    • 如何准确地理解用户兴趣? 用户兴趣是复杂的,仅仅根据用户点击过的新闻无法完全刻画用户兴趣。

    多视角注意力学习:洞悉新闻与用户

    为了解决上述挑战,研究人员提出了多视角注意力学习(NAML)方法。该方法将新闻看作一个多视角的信息集合,并利用注意力机制来识别不同视角中的关键信息,从而构建更准确的新闻和用户表示。

    1. 新闻编码器:多视角融合

    NAML方法的核心是新闻编码器,它将新闻标题、内容和类别等不同信息作为不同的视角,并利用注意力机制来识别每个视角中的关键信息。

    • 标题编码器: 利用卷积神经网络(CNN)来学习标题中词语的上下文信息,并通过词级注意力机制来识别标题中最重要的词语。
    • 内容编码器: 与标题编码器类似,内容编码器也使用CNN来学习内容中的词语上下文信息,并通过词级注意力机制来识别内容中最重要的词语。
    • 类别编码器: 将新闻类别和子类别信息转化为低维向量,并利用全连接层来学习类别信息。
    • 视角级注意力机制: 不同视角的信息对新闻的理解可能具有不同的重要性。例如,对于一些标题简洁、内容丰富的新闻,内容视角可能比标题视角更重要。NAML方法利用视角级注意力机制来评估不同视角的重要性,并根据权重对不同视角的信息进行加权融合,最终得到一个综合的新闻表示。

    2. 用户编码器:个性化理解

    NAML方法还利用用户编码器来学习用户的兴趣表示。用户编码器根据用户点击过的新闻来学习用户的兴趣,并利用新闻级注意力机制来识别用户点击过的新闻中哪些新闻更能代表用户的兴趣。

    3. 点击预测:精准推荐

    NAML方法利用用户表示和新闻表示之间的内积来预测用户点击新闻的概率。为了提高预测的准确性,NAML方法还采用了负采样技术,即对于用户点击过的新闻,随机选取一些用户没有点击过的新闻作为负样本,并利用这些负样本来训练模型。

    实验验证:效果显著

    研究人员在真实世界新闻数据集上进行了实验,结果表明NAML方法显著优于其他基线方法,证明了多视角注意力学习的有效性。

    • 多视角学习的有效性: 实验结果表明,将新闻标题、内容和类别信息作为不同的视角进行融合,可以显著提升新闻推荐的效果。
    • 注意力机制的有效性: 实验结果表明,词级、新闻级和视角级注意力机制都能够有效地识别关键信息,并提升新闻推荐的效果。

    总结

    多视角注意力学习是新闻推荐领域的一项重要技术,它能够有效地利用新闻和用户的多视角信息,构建更准确的新闻和用户表示,从而实现更精准的新闻推荐。随着深度学习技术的不断发展,我们可以期待未来出现更多更强大的新闻推荐技术,为用户提供更加个性化、高效的新闻服务

    参考文献

  • 个性化新闻推荐:让新闻更懂你

    每天,我们都被海量的新闻信息包围,如何从纷繁复杂的新闻中找到自己感兴趣的内容,成为一个越来越重要的课题。个性化新闻推荐系统应运而生,它能够根据用户的兴趣和偏好,为用户推荐他们可能感兴趣的新闻,帮助用户在信息海洋中快速找到自己想要的内容,缓解信息过载带来的压力。

    然而,传统的新闻推荐系统往往存在一些局限性。例如,它们难以准确捕捉用户的个性化兴趣,无法理解不同用户对同一新闻的不同关注点,也无法有效识别新闻标题中不同词语的重要性。

    为了解决这些问题,来自清华大学、北京大学和微软亚洲研究院的研究人员提出了一种名为“个性化注意神经网络”(NPA)的新闻推荐模型。该模型的核心在于通过神经网络学习新闻和用户的表示,并利用个性化注意机制来识别不同用户对新闻的不同关注点。

    NPA:让新闻更懂你

    NPA 模型主要包含三个模块:新闻编码器、用户编码器和点击预测器。

    新闻编码器负责学习新闻的表示。它首先利用词嵌入将新闻标题中的每个词语转化为一个低维稠密向量,然后使用卷积神经网络(CNN)来提取词语之间的局部上下文信息,最后通过一个词级个性化注意网络来识别不同用户对新闻标题中不同词语的不同关注点。

    用户编码器负责学习用户的表示。它根据用户点击过的新闻来学习用户的兴趣,并利用一个新闻级个性化注意网络来识别不同用户对同一新闻的不同关注点。

    点击预测器负责预测用户点击新闻的概率。它利用用户和新闻的表示,通过内积运算和 Softmax 函数来计算用户点击新闻的概率。

    个性化注意机制:识别用户的关注点

    NPA 模型的核心是个性化注意机制,它能够根据用户的个人特征,识别用户对新闻中不同词语和不同新闻的不同关注点。

    在词级个性化注意网络中,模型首先将用户的 ID 嵌入到一个低维向量中,然后利用一个全连接层来学习用户的词语偏好查询向量。接着,模型计算每个词语与查询向量之间的相似度,并利用 Softmax 函数将相似度转化为注意权重。最后,模型根据注意权重对词语的表示进行加权求和,得到用户对新闻标题的表示。

    在新闻级个性化注意网络中,模型同样将用户的 ID 嵌入到一个低维向量中,并利用一个全连接层来学习用户的新闻偏好查询向量。接着,模型计算每个新闻的表示与查询向量之间的相似度,并利用 Softmax 函数将相似度转化为注意权重。最后,模型根据注意权重对新闻的表示进行加权求和,得到用户的表示。

    实验验证:NPA 带来显著提升

    研究人员在来自微软新闻的真实新闻推荐数据集上对 NPA 模型进行了测试,并将其与其他主流新闻推荐模型进行了比较。实验结果表明,NPA 模型在 AUC、MRR、nDCG@5 和 nDCG@10 等指标上均取得了显著的提升,证明了 NPA 模型的有效性。

    此外,研究人员还通过可视化分析,展示了 NPA 模型的个性化注意机制如何识别不同用户对新闻的不同关注点。例如,对于喜欢运动新闻的用户,模型会更多地关注新闻标题中的“NBA”、“NFL”等关键词;而对于喜欢电影新闻的用户,模型则会更多地关注新闻标题中的“电影”、“超级英雄”等关键词。

    总结:NPA 为个性化新闻推荐开辟新方向

    NPA 模型利用神经网络和个性化注意机制,有效地学习了新闻和用户的表示,并识别了不同用户对新闻的不同关注点,从而实现了更精准的个性化新闻推荐。这项研究为个性化新闻推荐领域开辟了新的方向,也为其他推荐系统提供了新的思路。

    参考文献

    [1] Wu, C., Wu, F., An, M., Huang, J., Huang, Y., & Xie, X. (2019). NPA: Neural News Recommendation with Personalized Attention. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1029-1038).

    [2] Wang, H., Zhang, F., Xie, X., & Guo, M. (2018). DKN: Deep Knowledge-Aware Network for News Recommendation. In Proceedings of the 2018 World Wide Web Conference (pp. 1835-1844).

    [3] Lian, J., Zhang, F., Xie, X., & Sun, G. (2018). Towards Better Representation Learning for Personalized News Recommendation: a Multi-Channel Deep Fusion Approach. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (pp. 3805-3811).

人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 借一步网
Page Stats: PV: 1 | UV: 1
Last updated: 2025-07-09 19:55:20
沪ICP备2024052574号-1