博客

  • GLM-4 开源:国产大模型的新突破

    近年来,以 ChatGPT 为代表的大型语言模型(LLM)在全球掀起了人工智能的热潮。国内的科技公司和研究机构也积极投入到这场技术革命中,推出了众多优秀的 LLM 产品。近日,智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本——GLM-4-9B,就以其强大的性能和丰富的功能,成为了国产大模型的又一突破。

    全面升级,性能超越 Llama-3-8B

    GLM-4-9B 不仅仅是模型参数规模的提升,更是在模型架构和训练数据上进行了全面升级。在语义理解、数学推理、代码执行等多个领域,GLM-4-9B 都展现出了超越 Llama-3-8B 的卓越性能,标志着国产大模型在技术上达到了新的高度。

    功能丰富,应用场景广泛

    GLM-4-9B 不仅性能强大,功能也十分丰富,可以支持多种应用场景:

    • 多轮对话: GLM-4-9B-Chat 支持流畅的多轮对话体验,可以像人类一样进行自然语言交互。
    • 网页浏览: 能够解析和理解网页内容,提取关键信息,为用户提供更智能的搜索和信息获取服务。
    • 代码执行: 具备实际的编程语言执行能力,可以辅助程序员编写和调试代码,提高开发效率。
    • 自定义工具调用: 可以调用自定义的函数和工具,扩展模型的功能,满足特定领域的需求。
    • 长文本推理: 支持最大 128K 的上下文,GLM-4-9B-Chat-1M 模型更是支持高达 1M 的上下文长度,可以处理更复杂的任务。

    多语言支持,打破沟通壁垒

    GLM-4-9B 增加了对 26 种语言的支持,包括日语、韩语、德语等,让 AI 的语言能力不再受限,为跨语言交流和文化传播提供了新的可能性。

    多模态融合,开启智能新时代

    GLM-4V-9B 是基于 GLM-4-9B 的多模态模型,具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在多模态评测中表现超越了多个竞争对手。这意味着 GLM-4 不仅可以理解和生成文本,还可以处理图像、视频等多模态信息,为构建更智能、更人性化的 AI 应用奠定了基础。

    开源开放,共建 AI 生态

    智谱 AI 将 GLM-4-9B 开源,这一举措体现了其开放合作的态度,也为 AI 社区带来了新的活力和创新动力。相信在开源社区的共同努力下,GLM-4 将会得到更广泛的应用,为各行各业带来更多价值。

    体验 GLM-4,拥抱 AI 未来

    想要体验 GLM-4-9B 的强大能力吗?您可以通过 Huggingface 和 ModelScope 下载模型,快速开始您的 AI 探索之旅。

    让我们一起期待 GLM-4 在未来的发展,共同见证国产大模型的崛起!


  • 当大型语言模型遭遇信息污染:像压缩文件一样去除知识噪声

    近年来,大型语言模型(LLM)在人工智能领域掀起了一场革命。从写诗作赋到生成代码,LLM 似乎无所不能。然而,即使是最先进的 LLM 也面临着一个棘手的问题:信息污染。

    知识的海洋也暗藏“暗礁”

    想象一下,你正在使用一个智能搜索引擎寻找答案。你输入问题,引擎从海量数据中检索信息,并将结果呈现给你。但问题是,这些信息并非总是准确可靠的。就像知识的海洋中也暗藏“暗礁”一样,LLM 经常会遇到以下问题:

    • 幻觉: LLM 有时会生成看似合理但实际错误或无意义的内容,就像凭空捏造信息一样。
    • 知识缺失: LLM 的知识来源于训练数据,对于特定领域或专业知识可能存在盲区。

    为了解决这些问题,研究人员开发了检索增强生成技术。这项技术就像为 LLM 配备了一个外部知识库,使其能够在生成文本时参考更广泛的信息。然而,新的挑战也随之而来:如何确保检索到的信息是准确且相关的?

    信息瓶颈:为知识“瘦身”

    为了应对信息污染的挑战,《An Information Bottleneck Perspective for Effective Noise Filtering on Retrieval-Augmented Generation》这篇论文提出了一种新颖的解决方案:信息瓶颈(IB)。

    那么,什么是信息瓶颈呢?

    简单来说,信息瓶颈就像压缩文件一样,目标是从海量信息中提取最精华的部分,同时去除冗余和噪声。

    “信息瓶颈理论将学习描述为数据压缩和信息保留之间微妙的平衡。当应用于特定任务时,其理念是提取对任务至关重要的所有信息特征,同时丢弃冗余信息。”

    具体到 LLM 中,信息瓶颈是如何工作的呢?

    想象一下,你正在准备一场演讲。你从书籍、网络和其他资料中收集了大量信息,但并非所有内容都对你的演讲至关重要。你需要筛选出最关键的信息,并将其组织成简洁易懂的内容。

    信息瓶颈的作用就像一位经验丰富的编辑,它可以帮助 LLM 完成以下工作:

    1. 识别关键信息: 通过分析输入的查询和检索到的信息,信息瓶颈可以识别出与生成文本最相关的部分。
    2. 压缩信息: 信息瓶颈会对关键信息进行压缩,去除冗余和噪声,使其更加简洁易懂。
    3. 提高生成质量: 通过提供更准确、更相关的知识,信息瓶颈可以帮助 LLM 生成更优质的文本,减少幻觉和错误。

    信息瓶颈:不仅仅是“瘦身”

    除了压缩信息,信息瓶颈还为评估和改进 LLM 的性能提供了新的思路:

    • 更全面的评估指标: 传统的评估指标通常只关注生成文本的流畅度和语法正确性,而信息瓶颈提供了一种更全面的评估方法,可以同时评估文本的简洁性和准确性。
    • 更有效的训练方法: 信息瓶颈可以用于指导 LLM 的训练过程,例如,通过强化学习算法,鼓励 LLM 生成更简洁、更准确的文本。

    结语

    信息瓶颈为解决 LLM 中的信息污染问题提供了一种全新的思路。随着技术的不断发展,我们有理由相信,信息瓶颈将在提升 LLM 性能方面发挥越来越重要的作用,为我们带来更智能、更可靠的 AI 应用。

    参考文献

    • Zhu, K., Feng, X., Du, X., Gu, Y., Yu, W., Wang, H., … & Qin, B. (2024). An Information Bottleneck Perspective for Effective Noise Filtering on Retrieval-Augmented Generation. arXiv preprint arXiv:2406.01549v1.
人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 借一步网
Page Stats: PV: 1 | UV: 1
Last updated: 2025-06-28 12:02:53
沪ICP备2024052574号-1