博客

  • AppAgent介绍:一款革命性的多模态智能代理框架,用于操作智能手机应用程序

    📱 AppAgent介绍:一款革命性的多模态智能代理框架,用于操作智能手机应用程序

    你是否厌倦了手动浏览众多智能手机应用程序?想象一下拥有一个智能代理,可以无缝地操作智能手机应用程序,模拟人类般的交互。那么,你的愿望已经实现了,这就是划时代的AppAgent!

    🔖 AppAgent是什么?

    AppAgent是一种基于LLM的全新多模态智能代理框架,专为操作智能手机应用程序而设计。这一创新性框架通过简化的操作空间,使代理能够执行各种操作,如点击和滑动。

    与传统方法需要对系统进行后端访问不同,AppAgent可以独立运行,适用于各种应用程序。其多功能性使其能够高效地导航和使用不同的应用程序。

    🎯 AppAgent如何工作?

    AppAgent的核心功能是其创新的学习方法。代理可以使用两种主要方法来学习操作新的应用程序:自主探索和人类演示学习。

    1️⃣ 自主探索:
    在这种方法中,代理会自主探索应用程序,尝试不同的操作并观察结果。通过这个试错过程,它建立了一个知识库,帮助它在多个应用程序上执行复杂任务。

    2️⃣ 人类演示学习:
    另一种方法是代理通过观察人类演示来学习。通过观察用户与应用程序的交互,它学习必要的操作,并建立对应用程序功能的全面理解。

    📽️ 演示视频:

    通过演示视频最能展示AppAgent的功能。在以下视频中,你可以亲眼见证AppAgent的强大能力:

    1️⃣ 在X(Twitter)上关注用户:
    观看AppAgent在部署阶段轻松地关注X(Twitter)上的用户。视频展示了代理高效完成任务的能力,将你从重复的手动操作中解放出来。

    2️⃣ CAPTCHA实验:
    AppAgent在成功解决CAPTCHA挑战方面展现出其智能的一面。目睹代理如何绕过CAPTCHA验证,证明其高级功能。

    🚀 快速入门指南:

    准备好探索AppAgent的世界了吗?按照以下简单步骤开始:

    🔹 步骤1:先决条件

    • 确保你有启用USB调试的Android设备。
    • 在计算机上下载并安装Android Debug Bridge(adb)。
    • 通过USB将设备连接到计算机。
    • 克隆AppAgent存储库并安装必要的依赖项。

    🔹 步骤2:配置代理

    • AppAgent依赖于多模态模型,如gpt-4-vision-preview,以做出决策。
    • 修改配置文件(config.yaml),包括你的OpenAI API密钥,并调整请求间隔。

    🔹 步骤3:探索阶段

    • AppAgent的探索阶段提供两个选项:自主探索和人类演示学习。
    • 在自主探索中,代理独立探索应用程序,通过试错方式学习。
    • 从人类演示学习中,代理观察用户交互并相应地建立知识。

    🔹 步骤4:部署阶段

    • 一旦完成探索阶段,AppAgent即可投入部署。
    • 利用代理的知识库在各种应用程序上高效执行复杂任务。

    📝 待办事项:

    AppAgent不断发展,未来将有令人期待的更新。敬请关注即将推出的功能和改进,包括:

    • 更强大的学习算法,以更快地适应新的应用程序
    • 与语音助手的集成,实现无缝语音命令
    • 对其他平台和操作系统的支持

    📚 引用:

    如果你在研究或开发中发现AppAgent有用,请引用我们的工作。以下是引用的详细信息:

    作者:Chi Zhang、Zhao Yang、Jiaxuan Liu、Yucheng Han、Xin Chen、Zebiao Huang、Bin Fu、Gang Yu(通讯作者)

    🎉 加入AppAgent革命!

    告别繁琐的手动应用操作,拥抱智能手机交互的未来。通过AppAgent,你的智能手机体验将彻底改变。准备好释放智能手机的全部潜力吧,和AppAgent一起!

    🌐 探索AppAgent的GitHub存储库:
    GitHub – AppAgent

    🙌 为AppAgent社区做出贡献:
    无论你是人工智能爱好者、开发者还是研究人员,我们邀请你加入AppAgent社区。分享你的经验,为框架的改进做出贡献,成为智能手机应用操作革命的一部分。

    让AppAgent成为你的虚拟助手,简化你的智能手机体验,让你在应用程序上做更多事情!📲💪

  • LLM 大语言模型的输出是一段文本,如何计算误差?

    对于输出文本的大型语言模型(如GPT系列模型),计算误差通常涉及到预测下一个词或者一系列词的概率分布,并使用特定的损失函数来衡量模型预测与真实值之间的差异。下面是详细步骤:

    • 模型输出:
    • 模型在给定前文(或上下文)的条件下输出一个概率分布,这个分布表示下一个词是词汇表中每个词的概率。
    • 真实标签:
    • 真实标签通常是一个“one-hot”编码的向量,表示实际出现的下一个词。在这个向量中,实际单词的位置为1,其余位置为0。
    • 损失函数:
    • 对于语言模型,常用的损失函数是交叉熵损失(Cross-Entropy Loss)。这个函数衡量的是模型输出的概率分布和真实标签之间的差异。具体来说,交叉熵损失计算的是模型输出的概率分布的负对数似然在真实单词位置的值。
    • 计算步骤:
    • 对于单个训练样本,如果模型对于下一个词的预测概率分布是 ( P ),真实的单词在词汇表中的位置是 ( y ),则交叉熵损失 ( L ) 可以表示为: [ L=−∑iyi​log(Pi​) ] 在实际操作中,因为 ( y ) 是一个one-hot向量,上式中只有真实单词对应位置的项会有贡献,所以损失简化为: [ L=−log(Py​) ] 其中 ( P_y ) 是模型预测的真实单词的概率。
    • 批量处理:
    • 在处理大量数据时,通常会计算一批数据的平均损失。这是通过对批中每个样本的损失进行求和,然后除以批中样本的数量得到的。
    • 反向传播:
    • 使用损失函数关于模型参数的梯度,来更新模型的参数,以此减少预测误差。

    通过这种方式,即使输出是文本,语言模型也能够在训练过程中通过优化损失函数来减少预测误差,提高对下一个词或一系列词预测的准确性。在实际应用中,模型还会被评估其在多样化的文本生成、理解或其他NLP任务上的性能,这些任务可能需要额外的评估指标,如BLEU、ROUGE或者Perplexity等。

人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 借一步网 沪ICP备2024052574号-1