博客

  • 顿悟Groking—深度洞察大型语言模型的学习方式

    亲爱的听众,大家好!👋欢迎来到我们的AI科技播客节目,我是您的主持人。今天我们要一起探索一个非常有趣也相当深奥的话题:“顿悟Groking——深度洞察大型语言模型的学习方式”。🧠💡📚

    🎈引子:神秘的AI世界

    在我们开始深入主题之前,我想先给大家讲一个小故事。你是否曾经有过这样的体验:面对一个复杂的问题,你琢磨了很久都无法找到答案,但突然有一天,你灵光一闪,想明白了所有的问题,这就是我们所说的“顿悟”或者“恍然大悟”。在人工智能的世界里,也存在着这样的“顿悟”现象。让我们一起来揭开AI的神秘面纱,看看它们是如何学习和理解我们的世界的。🕵️🔎

    📖语境学习(In-Context Learning)

    首先,我们要介绍的是一种称为“语境学习”的学习方式。在这种方式中,模型通过观察和学习词语或者短语在语境中的使用,理解它们的含义。也就是说,就像我们通过上下文来理解词汇的含义一样,AI模型也能通过查看输入和标签的样例,学习它们之间的映射关系。🤖🧠

    有趣的事实是,当模型足够大时,即使给定的标签和模型的语义先验相矛盾,它们也可以学习并理解这种矛盾的映射关系。这就像是说,即使我们告诉模型白天是黑夜,黑夜是白天,它们也能从这种混乱的情况中学习并理解新的映射关系。这种能力在小型模型中是无法实现的。🌓✨

    🎯无关标签的语境学习(SUL-ICL)

    接下来,我们要介绍的是另一种学习方式,叫做“无关标签的语境学习”(SUL-ICL)。在这种情况下,标签和输入的语义是完全无关的。也就是说,模型不能依赖于标签的语义来理解任务,而必须从输入和标签之间的映射关系中学习。这就像是我们给模型展示了一幅抽象画,让它去理解画中的意义。🎨🖼️

    然而,就算在这样的困难环境下,大型模型依旧能够很好地完成任务,而小型模型的表现则大打折扣。这就好像是说,即使我们给模型展示了最抽象最复杂的画作,它也能从中理解并学习到新的知识。这种能力在小型模型中是无法实现的。💪🦾

    📈指导调优(Instruction Tuning)

    在深度学习和AI领域,我们有一种叫做“指导调优”的技术。这种技术的核心思想是,通过对模型的微调,使模型更好地理解并执行特定任务。在无关标签的语境学习(SUL-ICL)环境中,指导调优能提高模型的性能,增强模型学习输入-标签映射的能力。🎛️🔧

    但是,也有一些有趣的现象。研究发现,进行指导调优的模型更不易接受反向的标签。也就是说,调优后的模型更倾向于依赖它们的语义先验,而不愿意接受与这些先验相冲突的新信息。这可能会限制模型的学习灵活性。⚖️🔄

    ✨结语

    今天,我们一起探索了大型语言模型的学习方式,看到了它们在语境学习中如何依赖或者覆盖语义先验,如何在无关标签的环境中学习输入-标签映射,以及指导调优如何影响模型的学习方式。🌈🎁

    AI的世界充满了未知和奇迹,就像我们的世界一样。虽然我们还有很多未解的问题,但是每一次的探索,每一次的“顿悟”,都让我们离理解AI的真相更近一步。让我们期待下一次的探索,期待下一次的“顿悟”。🚀🌟

    感谢大家的倾听,我们下期播客再见。再见!👋🎧

  • 深度压缩感知——深度学习与压缩感知的完美融合

    🚀 序言

    大家好!欢迎收听我们的播客,我是你们的主持人,一个热爱科学和技术的追梦者。今天,我们要谈论的主题是一个神奇且引人入胜的话题——深度压缩感知。听起来有点复杂对吧?别担心,我会尽量将它解释得通俗易懂,让我们一起在知识的海洋中探索、学习。

    🌠 挑战与奇迹:压缩感知

    首先,让我们来聊聊什么是压缩感知。压缩感知(Compressed Sensing)是一种优雅的框架,用于从压缩信号中恢复稀疏信号。例如,CS 可以利用自然图像的结构,仅从少量的随机测量中恢复图像。这是不是听起来像是进行了一次魔法操作呢?🎩🐰

    压缩感知的理论深入复杂,但是它的核心思想非常精妙——我们可以通过极少的采样点,实现了和全采样一样的效果。这就好像我们只需要看一只黑天鹅的一部分,就能推断出整个黑天鹅的样子。这样的思路是不是颠覆了你的认知呢?🤔

    🌐 深度学习与压缩感知的结合

    现在,让我们把目光转向我们的主题——深度压缩感知。DeepMind 的研究人员提出了一种全新的深度压缩感知框架,这是将压缩感知与深度学习相结合的一种尝试。

    深度压缩感知(DCS)框架通过联合训练生成器和通过元学习优化重建过程,显著提高了信号恢复的性能和速度。实际上,这就是合理地利用了压缩感知和深度学习的优点,形成了一种有效的、高效的框架。

    💡 新方法:改进 GAN 的新策略

    DeepMind 的研究人员还开发了一种使用来自鉴别器的梯度信息来改进 GAN 的新方法。你可能会问,GAN 是什么呢?GAN,全称生成对抗网络(Generative Adversarial Networks),是深度学习的一种方法,通过让两个神经网络互相斗争,来生成新的、以假乱真的数据。通过这种新的方法,我们可以进一步提升 GAN 的性能,打开了深度学习新的可能性。

    🎉 结语

    今天,我们一起走进了深度压缩感知的奇妙世界,看到了深度学习与压缩感知的完美结合。我们还了解了如何改进 GAN 的新方法,感受到了人工智能的无限可能。

    这就是今天的播客内容,希望你们喜欢。记住,无论前方的道路有多么曲折,知识的力量都可以指引我们找到前进的方向。下期播客,我们会继续探索科技的新前沿,期待你的收听!👋

    以上内容,主要参考了:深度压缩感知,新框架提升 GAN 性能 – 知乎

    在此,向所有在科技领域探索前沿,努力推动人类进步的研究人员们致敬!🙏 未来, 我们会继续关注这些有着深远影响的科技发展,与你一起分享,一起学习。谢谢大家,我们下期再见!👋🎙️🎉

人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 借一步网
Page Stats: PV: 1 | UV: 1
Last updated: 2025-05-16 11:39:39
沪ICP备2024052574号-1