博客

  • 大模型能力的“涌现”机制被谷歌发现

    大型语言模型的涌现能力是一个黑箱,难以解释。尽管目前的研究已经开始揭示其中的一些机制,但我们仍然需要更深入的研究来更好地理解这些现象。

    谷歌的这篇论文提供了有关语言模型的ICL行为如何随着模型参数而改变的重要见解,以及更大的语言模型具有将输入映射到许多类型的标签的涌现能力。这些发现表明,不同规模的语言模型在上下文学习能力方面存在着明显的差异。特别是,大型语言模型可以通过覆盖预先训练的语义知识和学习输入-标签映射来执行任务,而小型模型则更依赖于先验知识。

    此外,研究者还发现,指令调优加强了语义先验知识的使用,而不是增加了学习输入-标签映射的能力。这些发现有助于我们更好地理解语言模型的涌现行为,同时也为未来的研究提供了方向,包括为什么这些现象会与模型参数规模相关等问题。


    未来的研究可以探索不同类型的语言模型之间的差异,以及它们的涌现能力如何随着训练数据集的规模变化而改变。

    此外,可以研究如何利用语义先验知识和输入-标签映射来设计更好的训练策略,以提高语言模型的性能。

    最终,我们希望通过深入研究语言模型的涌现能力,能够更好地理解它们如何执行复杂的自然语言处理任务,并为未来的人工智能发展提供更好的基础。

    论文地址:https://arxiv.org/pdf/2303.03846.pdf

  • InstructBLIP抢跑看图聊天,开源项目横扫多项SOTA

    InstructBLIP是一种指令感知的多模态基础模型,通过微调BLIP-2和丰富指令微调数据获得。它在图像理解、推理和描述上有很强的表现,实现了SOTA,有更好的泛化能力。值得期待其在更广泛的数据集和任务上持续创新。

    1. GPT-4尚未上线,但已被InstructBLIP超越,尤其在图像理解、推理和描述上表现更强。
    2. InstructBLIP基于BLIP-2进行微调得到,能进行多轮视觉对话,有更强的泛化能力。
    3. InstructBLIP通过收集11个任务类别下28个数据集,生成10-15个指令模板,得到更丰富的指令微调数据。
    4. InstructBLIP利用BLIP-2中的Q-Former,实现了指令感知的视觉特征提取方法。指令不仅输入到LLM,也输入到Q-Former,这有助提高模型从不同指令中学习的能力。
    5. 考虑数据集数量和大小差异,InstructBLIP使用加权采样和平滑方法进行训练。为某些数据集手动调整权重,提高其收敛性。
    6. InstructBLIP在13个数据集上取得SOTA,超过BLIP-2和Flamingo。在视频QA上未见过的数据集上,InstructBLIP超过SOTA47.1%。
    7. 消融研究显示,指令感知视觉特征提取和数据集平衡策略对性能有明显提升。特别是在需空间/时间视觉推理的任务上,指令输入Q-Former更为关键。
    8. 定性研究显示,InstructBLIP比GPT-4、LLaVA和MiniGPT-4有更全面、视觉化和逻辑的表现。InstructBLIP可以自适应生成不同长度的响应,解决用户意图。
    9. InstructBLIP通过指令微调和多任务训练,在特定数据集上有更好表现。与Flamingo和BLIP-2相比,InstructBLIP在微调时图像分辨率和视觉编码器保持不变,降低了训练参数,提高了效率。

    gfodor/instructblip-replicate: InstructBLIP replicate cog package (github.com)

    [2305.06500] InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning (arxiv.org)

人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 借一步网
Page Stats: PV: 1 | UV: 1
Last updated: 2025-05-13 05:48:52
沪ICP备2024052574号-1