博客

  • 学会无动作地行动:LAPO方法的探索之旅 🚀

    在深度学习的世界中,预训练大模型已经成为一种获取强大通用模型的有效途径,尤其是在语言和视觉领域。然而,在强化学习(RL)中,这种方法的应用却鲜有建树,原因在于大多数现有方法需要具体的动作标签,而视频这种最丰富的具身行为数据却常常缺乏这些标签。为了解决这一难题,Dominik Schmidt和Minqi Jiang在他们的论文《Learning to Act Without Actions》中提出了一种全新的方法——潜在动作策略(Latent Action Policies, LAPO)。本文将深入探讨该方法的核心思想及其在无标签视频数据中的应用潜力。

    1. 现状与挑战 ⚔️

    在传统的强化学习中,模型通常需要依赖于标记好的数据进行训练,以学习有效的策略。然而,当我们面对海量的无标签视频数据时,如何从中提取有效的动作信息就成了一大挑战。现有的模仿学习和离线强化学习方法,如模仿学习(Imitation Learning)和离线RL,通常依赖于动作或奖励标签,这使得从仅有观察数据(如视频)中学习变得困难重重。

    LAPO的出现正是为了填补这一空白。LAPO的核心在于从视频中恢复潜在的动作信息,从而生成可以快速微调的策略。具体来说,LAPO通过一个逆动态模型(Inverse Dynamics Model, IDM)来预测在两个连续观察之间采取的潜在动作,而不需要任何形式的标签。

    2. LAPO的原理 🔍

    LAPO的设计基于两个关键洞察:首先,通过观察环境的动态变化,可以推断出某种潜在动作;其次,在获得这些潜在动作之后,可以利用标准的模仿学习方法来训练潜在动作策略。在LAPO中,IDM不仅学习如何预测潜在动作,还通过与正向动态模型(Forward Dynamics Model, FDM)的预测一致性来优化其参数。

    2.1 潜在动作的学习

    在LAPO中,IDM的目标是通过压缩信息瓶颈来学习潜在动作。这种方法促使IDM不仅仅是传递未来观察结果,而是提取出对未来状态变化有重要影响的潜在动作。这意味着即使在没有任何真实动作标签的情况下,LAPO也能从观察到的动态中恢复出有效的动作信息。

    2.2 行为克隆与策略获取

    一旦IDM训练完成,接下来就是使用其预测的潜在动作来进行行为克隆(Behavior Cloning),从而得到潜在动作策略。这一过程通过最小化潜在动作与观察数据之间的差异来实现。通过这种方式,LAPO能够快速生成能够适应真实动作空间的策略。

    3. 实验与结果 📊

    在对Procgen基准测试的实验中,LAPO展示了其优越的性能。在多个环境中,LAPO能够在仅仅使用4M帧的情况下,恢复专家级别的表现,且在多个任务上超越了原专家的表现。这一结果表明,LAPO在无标签数据的情况下,依然能够学习到有价值的策略。

    3.1 潜在动作空间的可解释性

    通过对学习到的潜在动作空间进行UMAP降维可视化,研究人员发现潜在动作的结构与真实动作空间密切相关。这种可解释性不仅为LAPO的有效性提供了证据,也为未来的研究指明了方向。

    | 环境       | 恢复表现 | 超越表现 |
    |------------|----------|----------|
    | 环境A     | 是       | 否       |
    | 环境B     | 否       | 是       |
    | 环境C     | 是       | 是       |

    4. LAPO的潜在应用 🌐

    LAPO不仅在学术界具有重要意义,其潜在应用也十分广泛。随着网络上无标签视频数据的激增,LAPO为利用这些数据提供了新的思路。通过LAPO,我们可以在不依赖于昂贵标注的情况下,从大量视频中学习到有效的策略,为诸如自动驾驶、游戏AI、机器人等领域的研究提供了新的可能性。

    5. 结论与未来展望 🔮

    LAPO的提出标志着无标签学习领域的一次重要突破,其通过从纯观察数据中恢复全面的动作信息,为未来大规模无监督预训练的研究奠定了基础。随着计算能力的提升和数据集规模的扩大,我们有理由相信,LAPO及其衍生方法将在更多复杂的任务中展现出更强的适应性和鲁棒性。

    参考文献

    1. Radford et al. (2019). Language Models are Unsupervised Multitask Learners.
    2. Cobbe et al. (2019). Procgen Benchmark: A study of generalization in reinforcement learning.
    3. Baker et al. (2022). VPT: Video Pre-Training for Reinforcement Learning.
    4. Tishby et al. (2000). Information Bottleneck Method.
    5. Zheng et al. (2023). SS-ORL: Semi-Supervised Offline Reinforcement Learning.

  • 在无动作中学习行动:LAPO方法的探索与实践

    引言

    在深度学习的浪潮中,预训练大型模型已成为获取强大通用模型的重要策略。这种方法在语言和视觉等领域取得了显著成功。然而,在强化学习(Reinforcement Learning, RL)领域,这种策略尚未得到广泛应用。主要原因在于当前的主流方法通常依赖于行动标签,而这些标签在网络视频等纯观察数据中往往是缺失的。因此,如何从这些海量的、无标签的数据中提取有效的行动信息,成为了一个亟待解决的难题。

    为此,Dominik Schmidt和Minqi Jiang提出了一种创新的方法——潜在行动策略(Latent Action Policies, LAPO)。LAPO的核心在于从视频中恢复潜在的行动信息,进而获得潜在的行动策略、世界模型和逆动态模型。这一方法不仅能够在没有任何真实行动标签的情况下,推断出潜在的行动空间结构,还能在复杂的程序生成环境中表现出色。

    LAPO的基本原理

    LAPO的核心思想是通过观察环境的动态变化,推断出潜在的行动信息。这一过程可以分为以下几个主要步骤:

    1. 逆动态模型(IDM)和前向动态模型(FDM):LAPO首先训练一个逆动态模型,用于预测在两个连续观察之间采取的行动。然后,使用前向动态模型来预测给定过去观察和潜在行动的下一个观察。这两个模型通过最小化预测的下一个观察与实际观察之间的误差来联合训练。

          \[z_t \sim p_{IDM}(\cdot | o_{t-k}, \ldots, o_t, o_{t+1})\]

          \[\hat{o}<em>{t+1} \sim p</em>{FDM}(\cdot | o_{t-k}, \ldots, o_t, z_t)\]

      通过这种方式,IDM不仅能够捕捉到环境的动态变化,还能提取出有助于预测未来状态的潜在信息。
    2. 信息瓶颈:为了防止IDM仅仅将下一个观察直接传递给FDM,LAPO采用了信息瓶颈的策略。这一策略迫使IDM压缩传递给FDM的所有信息,从而学习到仅反映状态变化的潜在行动。这种潜在行动的结构与实际的行动空间密切相关。
    3. 行为克隆:在获得潜在行动后,LAPO使用行为克隆(Behavior Cloning)的方法来学习潜在行动策略。这一阶段主要基于生成的潜在行动标签,优化策略参数,使其在观察空间中能够生成相应的潜在行动。

          \[L_{BC} = ||\pi(o_t) - z_t||^2\]

    4. 解码潜在行动:最后,LAPO根据是否有小规模的真实标签数据,选择不同的解码方式。如果有少量的真实行动标签数据,可以训练一个解码器,将潜在行动映射到真实行动;如果没有,则通过在线环境交互,利用强化学习进一步优化策略。

    实验结果

    LAPO方法在Procgen基准测试中进行了验证。Procgen是一个具有16种不同任务的基准,具备复杂的动态和部分可观测性特征。研究发现,使用LAPO的潜在策略可以在仅4万帧的训练数据中恢复专家的表现,而从零开始的强化学习方法在相同条件下只能达到44%的专家表现。

    结果分析

    通过UMAP投影,LAPO在每个环境中学习到的潜在行动空间的结构高度可解释。许多环境中的潜在行动形成了明确的聚类,这些聚类与真实的离散行动紧密对应。这表明,尽管没有访问真实行动空间,LAPO依然能够有效地捕捉到潜在行动的信息。

    未来的研究方向

    虽然LAPO已展示出从无标签视频中学习有效行动策略的潜力,但仍有许多挑战待克服。首先,如何处理延迟效应的动作识别,以及如何在高噪声环境中提取有用信息,依然是研究的重要方向。此外,LAPO在复杂领域的应用,如网页视频的大规模建模,也需要进一步的探索。

    结论

    LAPO方法为无标签视频数据中的潜在行动学习提供了一个新的视角,通过逆动态模型和前向动态模型的结合,成功从环境动态中提取出潜在行动信息。该方法不仅为快速适应的预训练策略提供了可能,也为未来的多任务学习和复杂环境中的强化学习开辟了新的研究路径。

    参考文献

    1. Schmidt, D., & Jiang, M. (2024). Learning to Act without Actions. ICLR.
    2. Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.
    3. Cobbe, A., et al. (2019). Procgen Benchmark: A Reproducible Platform for Reinforcement Learning. arXiv.
    4. Tishby, N., & Zaslavsky, N. (2000). Information Bottleneck Method. arXiv.
    5. Radford, A., et al. (2021). Learning Transferable Visual Models From Natural Language Supervision. In ICML.

人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 借一步网
Page Stats: PV: 1 | UV: 1
Last updated: 2025-05-15 21:44:06
沪ICP备2024052574号-1