分类: 未分类

  • 告别矩阵乘法:探索轻量级语言模型的新纪元

    大型语言模型(LLM)在自然语言处理领域取得了巨大成功,但其高昂的计算成本和庞大的内存需求也成为了限制其应用的瓶颈。矩阵乘法(MatMul)是LLM中最主要的计算操作,其占用了大部分的计算时间和内存资源。为了解决这一问题,来自加州大学圣克鲁兹分校的研究人员提出了一种全新的,可扩展的无矩阵乘法语言模型(MatMul-free LM),该模型在保持强大性能的同时,彻底消除了所有矩阵乘法操作。

    为什么矩阵乘法如此重要?

    矩阵乘法在神经网络中无处不在,从密集层到卷积层,再到自注意力机制,都离不开矩阵乘法。这主要是因为现代图形处理单元(GPU)对矩阵乘法操作进行了高度优化。通过利用CUDA和cuBLAS等线性代数库,矩阵乘法可以被高效地并行化和加速。这使得AlexNet在2012年ImageNet竞赛中取得了胜利,并推动了深度学习的快速发展。

    然而,矩阵乘法操作也带来了巨大的计算成本和内存消耗。在训练和推理阶段,矩阵乘法通常占用了绝大部分的执行时间和内存访问。因此,研究人员一直在探索用更简单的操作来替代矩阵乘法。

    现有方法的局限性

    目前,替代矩阵乘法的方法主要有两种:

    1. 用基本运算替代矩阵乘法: 例如AdderNet用带符号的加法来替代卷积神经网络中的乘法。但AdderNet主要针对计算机视觉任务,在语言建模方面效果不佳。
    2. 二值化或三值化: 将矩阵中的元素量化为二进制或三进制,从而将矩阵乘法简化为简单的加减运算。这种方法可以应用于激活值或权重。例如,脉冲神经网络(SNN)使用二值化的激活值,而二值化神经网络(BNN)和三值化神经网络(TNN)使用量化的权重。

    近年来,BitNet等语言模型证明了量化方法的可扩展性,将所有密集层权重替换为二进制或三进制值,支持高达30亿个参数。然而,BitNet仍然保留了自注意力机制,而自注意力机制仍然依赖于昂贵的矩阵乘法。

    MatMul-free LM的创新之处

    为了彻底消除LLM中的矩阵乘法,研究人员提出了MatMul-free LM,该模型利用了密集层中的加法运算和自注意力机制中的逐元素哈达玛积。

    1. 三值化权重: 类似于BNN,MatMul-free LM将密集层中的权重限制为{-1, 0, +1},从而将矩阵乘法转换为简单的加减运算。

    2. 无矩阵乘法线性门控循环单元(MLGRU): 为了消除自注意力机制中的矩阵乘法,研究人员对门控循环单元(GRU)进行了优化,使其仅依赖于逐元素乘法。

    3. 无矩阵乘法门控线性单元(GLU): MatMul-free LM使用GLU作为通道混合器,并将其中的密集层替换为三值化权重,从而消除了矩阵乘法。

    MatMul-free LM的优势

    MatMul-free LM具有以下优势:

    • 计算效率更高: 消除了矩阵乘法操作,大幅减少了计算时间。
    • 内存需求更低: 三值化权重减少了模型的内存占用。
    • 硬件友好: 更适合在FPGA等专用硬件上实现。

    实验结果

    研究人员对MatMul-free LM进行了实验,并将其与Transformer++模型进行了比较,结果表明:

    • MatMul-free LM在性能上与Transformer++相当,甚至在某些情况下表现更佳。
    • MatMul-free LM在训练和推理阶段的效率都更高,内存占用和延迟都更低。
    • MatMul-free LM在FPGA上的实现也取得了成功,其效率接近人脑。

    未来展望

    MatMul-free LM的出现,为构建更高效、更节能的LLM开辟了新的道路。随着LLM在各种平台上的应用不断扩展,MatMul-free LM将成为构建高效、可扩展的LLM的重要方向。

    参考文献:

    [1] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097–1105, 2012.

    [2] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

    [3] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. In International Conference on Learning Representations, 2016.

    [4] S. B. Furber. Neuromorphic engineering. The MIT Press, 2016.

    [5] G. Indiveri, B. Linares-Barranco, R. Legenstein, D. Chicca, G. Indiveri, B. Linares-Barranco, R. Legenstein, D. Chicca, and A. Hamilton. Neuromorphic silicon. Springer, 2011.

    [6] T. Masquelier, S. Thornton, S. B. Furber, and J. V. Pulvermüller. A spiking neural network model of word recognition in the human brain. PLoS computational biology, 10(12):e1003974, 2014.

    [7] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks. In Advances in neural information processing systems, pp. 4107–4115, 2016.

    [8] M. Courbariaux, Y. Bengio, and J.-P. Salinas. Binaryconnect: Training deep neural networks with binary weights during backpropagation. In Advances in neural information processing systems, pp. 4107–4115, 2015.

    [9] R. Zhu, Y. Zhang, E. Sifferman, T. Sheaves, Y. Wang, D. Richmond, P. Zhou, and J. K. Eshraghian. Scalable MatMul-free Language Modeling. arXiv preprint arXiv:2406.02528, 2024.

    [10] L. Pei, S. Li, S. Zhang, J. Li, and S. Liu. BitNet: A Billion-Parameter Binary and Ternary Neural Network for Language Modeling. arXiv preprint arXiv:2302.03633, 2023.

    [11] L. Pei, S. Li, S. Zhang, J. Li, and S. Liu. BitNet: A Billion-Parameter Binary and Ternary Neural Network for Language Modeling. arXiv preprint arXiv:2302.03633, 2023.

    [12] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, H. Li, Y. Tang, Y. Wang, and X. Lin. Training deep neural networks with 8-bit floating point numbers. In Advances in Neural Information Processing Systems, pp. 6083–6092, 2018.

    [13] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734, 2014.

    [14] D. M. K. Pramanik, S. Bhattacharyya, and P. Das. Ternary BERT: Low-Precision BERT for Resource-Constrained Devices. arXiv preprint arXiv:2004.06633, 2020.

    [15] Y. Sun, Y. Zhang, Z. Liu, Y. Liu, and J. Tang. Quantized BERT: Efficient BERT for Resource-Constrained Devices. arXiv preprint arXiv:1910.04432, 2019.

    [16] Y. Wang, Y. Zhang, Y. Sun, J. Tang, and Z. Liu. Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights. arXiv preprint arXiv:2002.08150, 2020.

    [17] J. Zhou, Z. Sun, A. Zou, Q. Liu, and Y. Gong. Training Low-Precision Deep Neural Networks via Quantization-Aware Training. arXiv preprint arXiv:1905.04893, 2019.

    [18] C. Lee, S. Lee, H. Kim, and J. Shin. Spikformer: Spiking Neural Networks for Efficient Transformer. arXiv preprint arXiv:2103.13518, 2021.

    [19] C. Lee, S. Lee, H. Kim, and J. Shin. Spikformer: Spiking Neural Networks for Efficient Transformer. arXiv preprint arXiv:2103.13518, 2021.

    [20] A. S. M. A. Saleh, A. A. M. Al-Jumaily, and A. Al-Ani. Spike-Driven Transformer for Image Classification. arXiv preprint arXiv:2203.08669, 2022.

    [21] S. M. A. Saleh, A. A. M. Al-Jumaily, and A. Al-Ani. Spike-Driven Transformer for Image Classification. arXiv preprint arXiv:2203.08669, 2022.

    [22] X. Li, L. Huang, J. Li, and Y. Chen. Spiking-BERT: A Spiking Neural Network for Sentiment Analysis. arXiv preprint arXiv:2106.07442, 2021.

    [23] M. A. Saleh, A. A. M. Al-Jumaily, and A. Al-Ani. SpikeBERT: A Spiking Neural Network for Sentiment Analysis. arXiv preprint arXiv:2110.03458, 2021.

    [24] A. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer, A. Ku, and D. Tran. Image transformer. In International Conference on Machine Learning, pp. 3887–3896, 2018.

    [25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in neural information processing systems, pp. 5998–6008, 2017.

    [26] S. Liu, Z. Chen, Y. Li, Z. Liu, and W. Zhang. Mamba: A Low-Resource and Efficient Transformer. arXiv preprint arXiv:2106.02256, 2021.

    [27] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. In International Conference on Learning Representations, 2015.

    [28] P. Ramachandran, B. Zoph, and Q. Le. Swish: A self-gated activation function. arXiv preprint arXiv:1710.05941, 2017.

    [29] A. Courbariaux, R. Bengio, and J.-P. Salinas. Binaryconnect: Training deep neural networks with binary weights during backpropagation. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4107–4115, 2015.

    [30] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks. In Advances in Neural Information Processing Systems, pp. 4107–4115, 2016.

    [31] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

    [32] S. Z. Li, Y. H. Zou, T. Y. Liu, and B. Zhang. Linear recurrent unit. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 1780–1789, 2018.

    [33] A. Radford, J. Wu, R. Sutskever, and I. Sutskever. Learning to generate text with recurrent neural networks. arXiv preprint arXiv:1701.07875, 2017.

    [34] B. Wang. RWKV: A New Type of Recurrent Neural Network. arXiv preprint arXiv:2210.00078, 2022.

    [35] L. Pei, S. Li, S. Zhang, J. Li, and S. Liu. BitNet: A Billion-Parameter Binary and Ternary Neural Network for Language Modeling. arXiv preprint arXiv:2302.03633, 2023.

    [36] A. Touvron, T. Bernard, J. Caillard, G. Lample, and E. Lemoine. Llama: Open and Efficient Large Language Models. arXiv preprint arXiv:2302.09492, 2023.

    [37] A. Touvron, T. Bernard, J. Caillard, G. Lample, and E. Lemoine. Llama: Open and Efficient Large Language Models. arXiv preprint arXiv:2302.09492, 2023.

    [38] A. Touvron, T. Bernard, J. Caillard, G. Lample, and E. Lemoine. Llama: Open and Efficient Large Language Models. arXiv preprint arXiv:2302.09492, 2023.

    [39] Mistral AI. Mistral AI: A New Open Source LLM. https://mistral.ai, 2023.

    [40] Y. Bengio, N. L. C. da Silva, J. S. S. Souza, and P. Vincent. Neural networks for speech recognition. The Journal of the Acoustical Society of America, 131(3):1852–1865, 2012.

    [41] M. Courbariaux, Y. Bengio, and J.-P. Salinas. Binaryconnect: Training deep neural networks with binary weights during backpropagation. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4107–4115, 2015.

  • Groovy 的秘密武器:Grape 依赖管理

    作为一名资深的coder,我经常需要使用各种各样的编程语言和工具来完成工作。其中,Groovy 语言凭借其简洁的语法和强大的功能,成为了我日常开发中的得力助手。而 Grape 依赖管理工具,则是 Groovy 的一大亮点,它让 Groovy 的使用更加便捷和高效。

    轻松添加依赖:告别手动下载

    你是否曾经为手动下载和配置各种依赖库而烦恼?Grape 的出现彻底改变了这种状况。它就像一个魔法师,只需几行代码,就能将所需的依赖库自动下载并添加到你的项目中。

    最简单的使用方式就是添加一个 @Grab 注解到你的脚本中。例如,如果你想使用 Spring ORM 库,你可以这样写:

    @Grab(group='org.springframework', module='spring-orm', version='5.2.8.RELEASE')
    import org.springframework.jdbc.core.JdbcTemplate

    这段代码会自动下载 Spring ORM 库,并将其添加到你的脚本的类路径中。你就可以直接使用 JdbcTemplate 类来操作数据库了。

    扩展你的依赖库:不仅仅是 Maven Central

    除了 Maven Central 仓库,Grape 还支持从其他仓库下载依赖库。例如,如果你想使用 Restlet 库,你可以这样写:

    @GrabResolver(name='restlet', root='http://maven.restlet.org/')
    @Grab(group='org.restlet', module='org.restlet', version='1.1.6')

    这段代码会告诉 Grape 从 Restlet 的仓库中下载 org.restlet 库。

    高级功能:排除依赖、配置 JDBC 驱动、使用 Groovy Shell

    Grape 还提供了很多高级功能,例如:

    • 排除依赖: 如果你想排除某个依赖库,可以使用 @GrabExclude 注解。
    • 配置 JDBC 驱动: 由于 JDBC 驱动的加载方式特殊,你需要使用 @GrabConfig 注解来告诉 Grape 将 JDBC 驱动依赖添加到系统类加载器中。
    • 使用 Groovy Shell: 你也可以在 Groovy Shell 中使用 Grape.grab() 方法来添加依赖库。

    探索 Grape 的奥秘:深入理解其机制

    Grape 的底层机制依赖于 Ivy,这是一个强大的依赖管理工具。它遵循 Ivy 的命名规范,使用 groupmoduleversionclassifier 来标识依赖库。

    下载的依赖库会被存储在 ~/.groovy/grapes 目录下。

    灵活使用 Grape:注解、方法调用、命令行工具

    Grape 提供了多种使用方式:

    • 注解: 使用 @Grab 注解是最常用的方式,它可以方便地将依赖库添加到脚本中。
    • 方法调用: 你也可以使用 Grape.grab() 方法来添加依赖库,这种方式更灵活,可以根据需要传递不同的参数。
    • 命令行工具: Grape 还提供了一个命令行工具,可以用来管理本地 Grape 缓存。

    总结:Grape 让 Groovy 更强大

    Grape 是 Groovy 的一大亮点,它简化了依赖管理,让 Groovy 的使用更加便捷和高效。无论是初学者还是资深开发者,都可以轻松地使用 Grape 来管理依赖库,专注于代码的编写。

    参考文献:

人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 借一步网
Page Stats: PV: 10015 | UV: 4487
Last updated: 2025-08-03 07:02:52
沪ICP备2024052574号-1