标签: AI

  • 使用OpenVINO GenAI Flavor运行大语言模型

    随着人工智能技术的快速发展,大语言模型(Large Language Models, LLMs)在自然语言处理领域扮演着越来越重要的角色。然而,这些模型通常规模庞大、计算密集,给部署和推理带来了巨大挑战。为了解决这一问题,英特尔推出了OpenVINO GenAI Flavor,这是一个专门针对生成式AI模型优化的推理引擎。本文将详细介绍如何使用OpenVINO GenAI Flavor来高效运行LLMs,帮助开发者充分发挥硬件性能,实现快速、高效的模型推理。

    OpenVINO GenAI Flavor概述

    OpenVINO GenAI Flavor是OpenVINO工具套件的一个专门版本,旨在优化生成式AI模型的推理性能。它集成了多项先进技术,如动态形状支持、稀疏计算和高效内存管理等,特别适合处理LLMs这类大规模、复杂的模型。

    主要特点

    1. 专为LLMs优化:针对Transformer架构和生成式任务进行了特殊优化。
    2. 动态形状支持:能够处理变长输入序列,无需固定批处理大小。
    3. 高效内存管理:通过智能缓存和内存复用技术,显著减少内存占用。
    4. 稀疏计算加速:利用模型的稀疏性,提高计算效率。
    5. 多硬件支持:可在CPU、GPU等多种硬件平台上运行,充分利用硬件特性。

    安装和设置

    要开始使用OpenVINO GenAI Flavor,首先需要安装必要的软件包。您可以通过pip命令轻松完成安装:

    pip install openvino openvino-genai

    这将安装最新的OpenVINO开发版本以及GenAI Flavor专用组件。

    模型准备

    在使用OpenVINO GenAI Flavor之前,需要将LLM转换为OpenVINO的中间表示(IR)格式。这一步骤可以通过OpenVINO的模型转换工具完成。以下是转换过程的基本步骤:

    1. 导出原始模型:从训练框架(如PyTorch或TensorFlow)导出模型。
    2. 转换为ONNX:将模型转换为ONNX格式,这是一个通用的深度学习模型表示格式。
    3. ONNX到IR转换:使用OpenVINO的Model Optimizer工具将ONNX模型转换为IR格式。

    示例代码:

    from openvino.runtime import Core
    from transformers import AutoTokenizer, AutoModelForCausalLM
    
    # 加载预训练模型和分词器
    model_name = "gpt2"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    
    # 转换为ONNX格式
    onnx_model_path = "gpt2.onnx"
    dummy_input = tokenizer("Hello, how are you?", return_tensors="pt").input_ids
    torch.onnx.export(model, dummy_input, onnx_model_path, opset_version=11)
    
    # 使用OpenVINO转换为IR格式
    core = Core()
    ov_model = core.read_model(onnx_model_path)
    compiled_model = core.compile_model(ov_model, "CPU")

    使用OpenVINO GenAI Flavor进行推理

    一旦模型转换完成,就可以使用OpenVINO GenAI Flavor进行高效推理。以下是一个基本的推理流程示例:

    import numpy as np
    from openvino.runtime import Core, Tensor
    from transformers import AutoTokenizer
    
    # 初始化OpenVINO Core和模型
    core = Core()
    model = core.read_model("path/to/your/model.xml")
    compiled_model = core.compile_model(model, "CPU")
    
    # 准备输入数据
    tokenizer = AutoTokenizer.from_pretrained("gpt2")
    input_text = "OpenVINO is"
    input_ids = tokenizer.encode(input_text, return_tensors="np")
    
    # 创建推理请求
    infer_request = compiled_model.create_infer_request()
    
    # 设置输入并执行推理
    infer_request.set_input_tensor(Tensor(input_ids))
    infer_request.infer()
    
    # 获取输出
    output = infer_request.get_output_tensor().data
    
    # 解码输出
    generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
    print(generated_text)

    这个示例展示了如何使用OpenVINO GenAI Flavor加载模型、处理输入、执行推理并获取输出。

    高级功能和优化技巧

    OpenVINO GenAI Flavor提供了多种高级功能和优化技巧,可以进一步提升LLMs的推理性能:

    1. 动态形状处理

    GenAI Flavor支持动态输入形状,这对于处理变长序列非常有用:

    # 设置动态形状
    model.reshape({0: [-1, -1]})  # 第一维为批次大小,第二维为序列长度

    2. KV缓存优化

    对于自回归生成任务,GenAI Flavor实现了高效的KV缓存机制:

    # 启用KV缓存
    compiled_model = core.compile_model(model, "CPU", config={"PERFORMANCE_HINT": "LATENCY"})

    3. 稀疏计算加速

    GenAI Flavor可以自动检测和利用模型中的稀疏性,无需额外配置即可获得加速:

    # 稀疏计算会自动应用,无需特殊设置

    4. 批处理推理

    对于需要处理多个输入的场景,可以使用批处理来提高吞吐量:

    # 准备批处理输入
    batch_inputs = tokenizer(["Hello", "How are you", "OpenVINO is great"], 
                             padding=True, return_tensors="np")
    
    # 执行批处理推理
    results = compiled_model(batch_inputs.input_ids)

    5. 异步推理

    利用异步推理可以更好地利用硬件资源,提高整体效率:

    # 创建异步推理请求
    infer_request = compiled_model.create_infer_request()
    
    # 启动异步推理
    infer_request.start_async()
    
    # 等待结果
    infer_request.wait()
    
    # 获取结果
    output = infer_request.get_output_tensor().data

    性能优化和调优

    为了获得最佳性能,可以考虑以下优化策略:

    1. 选择合适的硬件:根据模型大小和推理需求,选择CPU、GPU或专用AI加速器。
    2. 量化:对模型进行INT8量化可以显著减少内存占用和推理时间。
    3. 模型剪枝:移除不必要的模型参数,减小模型大小。
    4. 缓存优化:合理设置缓存大小,平衡内存使用和性能。
    5. 并行推理:在多核系统上,利用多线程并行处理多个推理请求。

    示例代码:

    # 使用INT8量化
    quantized_model = core.quantize_model(model, "CPU", {"STAT_TYPE": "DYNAMIC"})
    
    # 设置线程数
    core.set_property("CPU", {"INFERENCE_NUM_THREADS": 4})
    
    # 启用缓存
    compiled_model = core.compile_model(quantized_model, "CPU", 
                                        config={"CACHE_DIR": "./model_cache"})

    最佳实践和注意事项

    1. 内存管理:对于大型LLMs,合理管理内存至关重要。使用流式处理或分段处理来减少内存占用。
    2. 输入预处理:确保输入数据格式正确,并考虑将预处理步骤集成到模型中以提高效率。
    3. 错误处理:实现健壮的错误处理机制,以应对可能的推理失败或异常情况。
    4. 模型更新:定期更新模型和OpenVINO版本,以获得最新的性能优化和功能支持。
    5. 性能监控:使用OpenVINO提供的性能分析工具来识别瓶颈并进行针对性优化。

    结论

    OpenVINO GenAI Flavor为运行大语言模型提供了强大而灵活的解决方案。通过利用其专门的优化技术和高级功能,开发者可以显著提升LLMs的推理性能,使这些复杂的模型能够在各种硬件平台上高效运行。随着生成式AI技术的不断发展,OpenVINO GenAI Flavor将继续演进,为开发者提供更多工具和能力,以应对未来的挑战和机遇。

    参考文献

    1. Intel Corporation. (2024). Run LLMs with OpenVINO GenAI Flavor — OpenVINO™ documentation. https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide/genai-guide.html
  • DouZero+是一种斗地主AI系统,它通过引入对手建模和指导学习的方法,进一步提升了斗地主AI的性能

    DouZero+是一种斗地主AI系统,它通过引入对手建模和指导学习的方法,进一步提升了斗地主AI的性能。斗地主是一款在中国非常流行的三人纸牌游戏,由于其不完全信息、大状态空间、协作与竞争并存以及大量可能的操作组合,给AI系统带来了很大的挑战。

    深度蒙特卡罗方法

    为了应对斗地主这种具有复杂规则和牌组合的游戏,DouZero+采用了深度蒙特卡罗(DMC)方法。DMC方法将传统的蒙特卡罗方法与深度神经网络相结合,用于函数近似。它通过对游戏情节进行采样,学习价值函数和最优策略。具体步骤包括使用当前策略生成情节、计算并更新Q值、基于新估计的Q值更新策略。这种方法特别适用于斗地主这种情节性任务,因为它能够高效地生成大量训练数据,并通过并行处理缓解方差问题。

    对手建模

    在斗地主中,对手建模旨在预测下一位玩家的手牌,从而帮助AI做出决策。DouZero+使用深度神经网络进行预测,并将预测结果与状态特征和动作特征相结合,输入决策模型。预测模型通过多头分类器输出下一位玩家每种牌的数量概率。实验结果表明,对手建模显著提升了AI的表现,使其能够更好地选择最佳动作并与队友协作[1]

    指导学习

    为了加速训练过程,DouZero+引入了指导学习方法。指导学习通过一个教练网络来识别初始手牌的平衡性,从而筛选出有价值的训练样本。教练网络输入三位玩家的初始手牌,输出地主的获胜概率。通过设定一个阈值,过滤掉获胜概率过小或过大的样本,从而节省时间,提高训练效率。实验结果显示,教练网络显著提升了AI的表现,使其更快地学习并形成应对各种情况的策略[1]

    结论与未来工作

    通过引入对手建模和指导学习,DouZero+在原有的DouZero基础上进一步提升了斗地主AI的性能。未来的工作将包括尝试其他神经网络架构(如ResNet)、结合搜索算法以增强性能,以及通过经验回放提高样本效率。此外,研究团队还计划将这些方法迁移到其他游戏中,以开发更强大的游戏AI[1]


    Learn more:

    1. DouZero+: 对手建模和教练引导学习强化斗地主 AI | BriefGPT – AI 论文速递
    2. 【论文阅读】DouZero+: Improving DouDizhu AI by Opponent Modeling and Coach-guided Learning-CSDN博客
    3. 【论文阅读】DouZero Mastering DouDizhu with Self-Play Deep Reinforcement Learning – 张天明 – 博客园
人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 借一步网
Page Stats: PV: 2005 | UV: 1192
Last updated: 2025-08-03 20:28:33
沪ICP备2024052574号-1