博客

  • 以强化学习让生成模型更符合人类审美:DDPO与TRL的完美结合


    亲爱的读者,你是否曾经想过,我们能否让人工智能生成的图片更符合人类的审美呢?今天,我们就要带你探索这个问题的答案。我们将介绍如何使用DDPO(Denoising Diffusion Policy Optimization)通过TRL(Transformers Library)微调稳定扩散模型,从而使AI生成的图像更符合人类的审美。这是一场充满挑战与创新的神经网络冒险之旅,让我们一起启程吧!

    一、DDPO与微调扩散模型的优势

    首先,我们必须理解的是,DDPO不是微调扩散模型的唯一方法,但它的优势却是显而易见的。以计算效率和准确性为首的一系列特点,使得DDPO成为了扩散模型微调的理想选择。相比于之前的方法,DDPO将去噪步骤视为一个多步马尔可夫决策过程(MDP),并在最终获得奖励。这种全新的方法,使得代理策略能够成为一个各向同性的高斯分布,而不是一个复杂的分布。因此,DDPO不仅提高了计算效率,还减少了误差的堆积,为我们提供了更精准的结果。

    二、DDPO算法简述

    DDPO算法主要使用了一种策略梯度方法,即近端策略优化(PPO)。在使用PPO的过程中,我们注意到,DDPO算法的独特之处主要体现在轨迹收集部分。为了更好地理解这个过程,我们提供了一个简单的流程图,帮助你理解DDPO在动作中的运作方式。

    三、DDPO与RLHF:增强审美性的混合

    了解了DDPO的工作原理后,我们会发现,将DDPO与RLHF(Reinforcement Learning from Human Feedback)结合起来,可以更有效地让模型的输出符合人类的审美。在这个过程中,我们首先使用预训练的扩散模型,然后收集人类偏好的数据并使用它来训练奖励模型,最后使用DDPO和奖励模型进行微调。这个过程不仅高效,而且结果非常令人满意,得到的图像更符合人类审美。

    四、使用DDPO训练稳定扩散模型

    让我们深入了解一下如何使用DDPO训练稳定扩散模型。首先,你需要具备一定的硬件条件,例如拥有一台A100 NVIDIA GPU。然后,安装trl库和其他一些必要的依赖。在设置完硬件和软件环境后,你就可以开始实际的训练过程了。

    我们的训练过程主要使用了trl库中的DDPOTrainer和DDPOConfig类。我们提供了一个示例训练脚本,该脚本利用这两个类和一些默认参数,对预训练的稳定扩散模型进行微调。在训练过程中,我们使用了一种审美奖励模型,该模型的权重是从公开的HuggingFace仓库中读取的。因此,你不需要自己收集数据和训练审美奖励模型。

    最后,我们通过python命令启动训练脚本,然后就可以看到训练过程的实时输出了。这个过程可能需要一些时间,所以请耐心等待。完成训练后,你就可以使用微调后的模型生成新的图像了。

    五、总结

    今天,我们一起探讨了如何使用DDPO通过TRL微调稳定扩散模型。在这个过程中,我们深入了解了DDPO的优势和工作原理,以及如何将其与RLHF结合起来,以便更好地使模型的输出符合人类的审美。我们还详细介绍了使用DDPO训练稳定扩散模型的具体步骤。

  • 让人工智能向无穷无尽的流畅表达迈进 — 探索“注意力吸收器”

    在我们日常的对话中,有没有想过让人工智能(AI)也能如人类一样自由流畅地进行长时间的交流?今天,我们将一同探索一种新的技术——“注意力吸收器”,它可能会引领我们走向这个目标。

    为何我们需要“注意力吸收器”?

    大规模语言模型(LLMs)近年来引领了聊天机器人和虚拟助手的技术进步,但是,它们也存在一些限制。这些限制主要体现在两个方面:视频随机存取内存(VRAM)的使用和流畅度的丧失。

    当我们使用LLMs进行长时间的对话时,模型的VRAM使用会呈线性增长,这可能会导致设备的内存限制。另一方面,当输入的内容过长,模型的表达流畅度会明显下降,表现为生成无意义的字符,或者重复的词汇。为了解决这些问题,我们研究了一种名为“注意力吸收器”的方法。

    窗口注意力:一种尝试解决方法

    为了解决VRAM使用问题,我们可以尝试限制输入到LLM的令牌数量,这种方法被称为窗口注意力。

    在实验中,我们将窗口大小设置为1024个令牌。结果显示,虽然这种方法可以保持内存的稳定使用,但是一旦超过窗口大小,模型的表达能力就会显著下降。

    注意力吸收器:新的解决思路

    2023年,Xiao等人发现,当应用窗口注意力时,模型在窗口中的第一个令牌被移除后,模型的流畅度立即下降。他们注意到,即使是语义上不重要的令牌,也会占据大量的注意力分数。他们将这些令牌称为“注意力吸收器”。

    基于这个发现,他们提出了一种改进的窗口注意力方法,即在窗口中始终保留初始的四个令牌,也就是“注意力吸收器”。这种方法有效地解决了窗口注意力中的一个关键问题:当第一个令牌从窗口中移除时,模型无法将注意力分数转移到该令牌上,从而导致模型失去流畅度。

    结论:注意力吸收器的威力

    我们使用注意力吸收器进行了实验,结果显示,使用注意力吸收器的LLMs同时具备了稳定的空间复杂度和流畅的表达能力。这表明,使用注意力吸收器,我们的模型可以保持流畅的表达,直到我们的数据耗尽。

    注意力吸收器让我们的AI更接近无穷无尽的流畅表达。尽管这仍然是一个新的领域,但我们希望这种方法能够推动AI技术的前进,为我们的日常生活带来更多的便利。

    在未来,我们期待看到更多的研究者和开发者参与到这个领域中来,共同推动AI技术的发展,让我们的AI可以更好地理解我们,更好地服务我们。

人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 借一步网
Page Stats: PV: 1 | UV: 1
Last updated: 2025-05-13 17:28:49
沪ICP备2024052574号-1